anoxic environment
Recently Published Documents


TOTAL DOCUMENTS

70
(FIVE YEARS 24)

H-INDEX

9
(FIVE YEARS 2)

Author(s):  
Chang Liu ◽  
Shiyan Wang ◽  
Xiaobo Liu ◽  
Huaidong Zhou ◽  
Budong Li ◽  
...  

Abstract Anoxia is a common phenomenon at the bottom of large reservoirs during thermal stratification. In an anoxic environment, an increasing amount of reducing substances and nutrients are released and settle at the hypolimnion of the reservoir, leading to water quality deterioration and eutrophication. This work presents a case study on Daheiting Reservoir, a part of the Water Diversion Project from the Luanhe River to Tianjin City. With the monitored data of the water temperature and dissolved oxygen content in the reservoir, and based on the mechanism of redox reactions, the water quality response to the hypolimnetic anoxia in Daheiting Reservoir was systematically analyzed. It was found that the release of total phosphorus from the sediments in Daheiting Reservoir was a joint effect of the biological and chemical processes, and the redox reaction in the anoxic zone boosted release of phosphorus. Anoxia in the reservoir caused the ammonia nitrogen released from sediments in the reservoir to accumulate at the hypolimnion, which increased the concentration of ammonia nitrogen in the water. Anoxia in the reservoir led to an increase in the concentration of iron and manganese, which accounts for the major driving factor of release of iron and manganese.


2021 ◽  
Vol 921 (1) ◽  
pp. 012026
Author(s):  
M S Burhanuddin ◽  
A Jaya ◽  
A Maulana

Abstract Tomori Basin is located close to the Banggai Basin which has several productive oil fields. Further investigation of the hydrocarbon potential in Tomori Basin is an important issue as potential hydrocarbon resources are indicated by the discovery of several oil seepages in the area. This study identified Tomori Basin oil seepage characteristics using a biomarker analysis approach. The Wosu and Kolo Areas were the main objectives of this study. Oil seepage characteristics were determined using Gas Chromatography (GC) and Gas Chromatography-Mass Spectrometry (GC-MS) methods to generate biomarker data which could be analysed to identify organic matter origin, oxic and anoxic conditions, source facies, or depositional environment. Based on the GC analysis of is oprenoids, the Pristane C19/Phytane C20 ratio (Pr/Ph) of Wosu Oil was 0.75, indicating anoxic conditions typical of a hypersaline environment. Kolo Oil had a Pr/Ph ratio of 3.37 indicative of terrestrial organic input under oxic conditions. A cross plot between Pristane/nC17 and Pr/Ph ratios indicates that Wosu Oil derives from a highly anoxic environment with algae/bacterial organic matter input whereas Kolo Oil derives from a suboxic-oxic environment dominated by terrestrial organic matter input. Trycyclic terpene analysis from C19 to C25 shows Wosu Oil seepages tend to originate from an environment of mixed terrestrial and marine organic matter (transitional environment). Overall, biomarker characteristics indicate that Wosu Oil originated from organic matter in a hypersaline and anoxic environment, whereas Kolo Oil originated from terrestrial matter in a suboxic – oxic environment.


Author(s):  
Neha Aggarwal

AbstractPalynofacies is based on the different types of the dispersed/sedimentary organic matter (DOM/SOM) and has been used as a proficient proxy for the palaeoclimatic reconstructions in sedimentary deposits of various time spans. It has also been acknowledged as an effective tool in the different domains like sequence biostratigraphy, palyno-biostratigraphy, palaeodepositional history, identification for depositional processes, oxic–anoxic environment, and variations in the water depth. It has been emerged as an analytical tool in palaeoclimatic reconstruction, which could complement geophysical and geochemical datasets. Since long palynofacies analysis has been exclusively applied in the marine sediments, it has recently dragged the attention of many researchers as a significant parameter for palaeoclimatic interpretation in continental deposits. In the last few decades, more consideration was focused on palynofacies that have become an essential proxy in the biostratigraphic and other non-biostratigraphic fields due to its requirement in the petroleum industries. The present study provides a basic idea of dispersed organic matter characterization, methodology, interpretations, and its application with special emphasis on the Gondwana deposits. The study also includes the summary of the worldwide distribution of the Gondwana sediments, especially for palaeodepositional settings through palynofacies along with other parameters.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Tuan Nguyen Quoc ◽  
Khanh Hoang Nguyen ◽  
Huong Ngo Thi Thuy ◽  
Nguyen Thi Hanh Tien ◽  
Chau Tran Thi Minh ◽  
...  

This study proposed a sequential redox process to partially degrade tetrabromobisphenol A (TBBPA) within a reactor to a great extent. After 72 hours in an anoxic environment, 20 ppm of TBBPA could be effectively degraded by sulfurized zerovalent iron nanoparticles (S-nZVI) at concentrations of 2 g L-1 and 4 g L-1. Biphenol A (BPA) together with tri-, di-, and monobromobisphenol A was detected by high-performance liquid chromatography (HPLC) suggesting that TBBPA was debrominated by S-nZVI in a stepwise manner. Following the S-nZVI treatment, a persulfate-advanced oxidation process (PS-AOP) system with persulfate concentrations varied from 5 to 20 mM was incorporated to degrade the final debrominated byproduct, BPA, for 2 hours. The two-stage anoxic/oxic reactions at the same reactor with initial conditions (0.037 mM TBBPA, 4 g L-1 of S-nZVI, pH 6 in anoxic stage, 20 mM of PS in the latter oxic stage) were investigated. The sulfurized layer played an important role in such a system and hypothetically contributes to increasing electron transfer from Fe0 core as well as hydrophobicity of the NP surface. It was demonstrated that the S-nZVI/PS-AOP system could effectively remediate TBBPA and BPA and consequently provide a promising strategy to remedy brominated organic pollutants in the environment.


2021 ◽  
Vol 118 (32) ◽  
pp. e2101498118
Author(s):  
Lauren J. Rajakovich ◽  
Beverly Fu ◽  
Maud Bollenbach ◽  
Emily P. Balskus

Trimethylamine (TMA) is an important gut microbial metabolite strongly associated with human disease. There are prominent gaps in our understanding of how TMA is produced from the essential dietary nutrient l-carnitine, particularly in the anoxic environment of the human gut where oxygen-dependent l-carnitine–metabolizing enzymes are likely inactive. Here, we elucidate the chemical and genetic basis for anaerobic TMA generation from the l-carnitine–derived metabolite γ-butyrobetaine (γbb) by the human gut bacterium Emergencia timonensis. We identify a set of genes up-regulated by γbb and demonstrate that the enzymes encoded by the induced γbb utilization (bbu) gene cluster convert γbb to TMA. The key TMA-generating step is catalyzed by a previously unknown type of TMA-lyase enzyme that utilizes a putative flavin cofactor to catalyze a redox-neutral transformation. We identify additional cultured and uncultured host-associated bacteria that possess the bbu gene cluster, providing insights into the distribution of anaerobic γbb metabolism. Lastly, we present genetic, transcriptional, and metabolomic evidence that confirms the relevance of this metabolic pathway in the human gut microbiota. These analyses indicate that the anaerobic pathway is a more substantial contributor to TMA generation from l-carnitine in the human gut than the previously proposed aerobic pathway. The discovery and characterization of the bbu pathway provides the critical missing link in anaerobic metabolism of l-carnitine to TMA, enabling investigation into the connection between this microbial function and human disease.


2021 ◽  
Author(s):  
Shuiping Cheng ◽  
Jing Huai ◽  
Fei Zhong ◽  
Juan Wu ◽  
Shaole Yu

Abstract Constructed wetlands (CWs) can be used for tertiary treatment of wastewater; however, carbon source shortages limit denitrification. We studied the effect of algae addition as an external carbon source in CWs and found that the nitrogen removal efficiency of CWs is highly dependent on the algae dosage. Optimal nitrogen removal can be achieved by adding 80 mg·L− 1 dry weight algae to the influent when the chemical oxygen demand/nitrogen (COD/N) ratio reaches 5.3. Longitudinal changes in the nitrogen concentrations, organic matter concentrations, and nitrogen functional genes were also analyzed. The algae addition strengthened the anoxic environment, boosted the volatile fatty acid concentrations, and proliferated the nitrite reductase gene (nirS) and the nitrite oxidoreductase alpha subunit gene (nxrA), thereby expanding the active space for denitrification. The integration of algal ponds with CWs could potentially provide enough carbon to enhance denitrification during treatment of wastewater with a low COD/N ratio.


2021 ◽  
Author(s):  
Nicholas B Waldo ◽  
Ludmila Chistoserdova ◽  
Dehong Hu ◽  
Heidi L. Gough ◽  
Rebecca B. Neumann

Abstract Aims Microbial activity in the soil of wetlands is responsible for the emission of more methane to the atmosphere than all other natural sources combined. This microbial activity is heavily impacted by plant roots, which influence the microbial community by exuding organic compounds and by leaking oxygen into an otherwise anoxic environment. This study compared the microbial communities of planted and unplanted wetland soil from an Alaskan bog to elucidate how plant growth influences populations and metabolisms of methanogens and methanotrophs. Methods A common boreal wetland sedge, Carex aquatilis, was grown in the laboratory and DNA samples were sequenced from the rhizosphere, unplanted bulk soil, and a simulated rhizosphere with oxygen input but no organic carbon. Results The abundance of both methanogens and methanotrophs were positively correlated with methane emissions. Among the methanotrophs, both aerobic and anaerobic methane oxidizing microbes were more common in the rhizosphere of mature plants than in unplanted soil, while facultative methanotrophs capable of utilizing either methane or other molecules became relatively less common. Conclusions These trends indicate that roots create an environment which favors highly specialized microbial metabolisms over generalist approaches. One aspect of this specialized microbiome is the presence of both aerobic and anaerobic metabolisms, which indicates that oxygen is present but is a limiting resource controlling competition.


Function ◽  
2021 ◽  
Author(s):  
Ruth A Riedl ◽  
Colin M L Burnett ◽  
Nicole A Pearson ◽  
John J Reho ◽  
Mohamad Mokadem ◽  
...  

Abstract Evidence supports various roles for microbial metabolites in the control of multiple aspects of host energy flux including feeding behaviors, digestive efficiency, and energy expenditure, but few studies have quantified the energy utilization of the biomass of the gut microbiota itself. Because gut microbiota exist in an anoxic environment, energy flux is expected to be anaerobic; unfortunately, commonly-utilized O2/CO2 respirometry-based approaches are unable to detect anaerobic energy flux. To quantify the contribution of the gut microbial biomass to whole-animal energy flux, we examined the effect of surgical reduction of gut biomass in C57BL/6J mice via cecectomy and assessed energy expenditure using methods sensitive to anaerobic flux, including bomb and direct calorimetry. First, we determined that cecectomy caused an acceleration of weight gain over several months due to a reduction in combined total host plus microbial energy expenditure, as reflected by an increase in energy efficiency (i.e. weight gained per calorie absorbed). Second, we determined that under general anesthesia, cecectomy caused immediate changes in heat dissipation that were significantly modified by short-term pretreatment with dietary or pharmaceutical interventions known to modify the microbiome, and confirmed that these effects were undetectable by respirometry. We conclude that while the cecum only contributes approximately 1% of body mass in the mouse, this organ contributes roughly 8% of total resting energy expenditure, that this contribution is predominantly anaerobic, and that the composition and abundance of the cecal microbial contents can significantly alter its contribution to energy flux.


Sign in / Sign up

Export Citation Format

Share Document