Experiments on knocking and abnormal combustion through optical diagnostics in a boosted spark ignition port fuel injection engine

2011 ◽  
Vol 12 (1) ◽  
pp. 93-101 ◽  
Author(s):  
S. S. Merola ◽  
P. Sementa ◽  
C. Tornatore
2009 ◽  
Vol 49 (1/2/3) ◽  
pp. 70 ◽  
Author(s):  
Simona S. Merola ◽  
Paolo Sementa ◽  
Cinzia Tornatore ◽  
Bianca M. Vaglieco

2016 ◽  
Author(s):  
Wanderson Navegantes Rodrigues ◽  
Lucas Ramos Pumputis ◽  
Heder Fernandes ◽  
Igor Cordeiro Trevas ◽  
Venicio Teixeira Nascimento Neto

2021 ◽  
Author(s):  
Felipe Solferini de Carvalho ◽  
Alexander Peñaranda Mendoza ◽  
Leila Ribeiro dos Santos ◽  
Enrico Malheiro de Oliveira ◽  
Maycon Ferreira Silva ◽  
...  

Author(s):  
Jianye Su ◽  
Weiyang Lin ◽  
Jeff Sterniak ◽  
Min Xu ◽  
Stanislav V. Bohac

Spark ignition direct injection (SIDI) gasoline engines, especially in downsized boosted engine platforms, are increasing their market share relative to port fuel injection (PFI) engines in U.S., European and Chinese vehicles due to better fuel economy by enabling higher compression ratios and higher specific power output. However, particulate matter (PM) emissions from engines are becoming a concern due to adverse human health and environment effects, and more stringent emission standards. To conduct a PM number and size comparison between SIDI and PFI systems, a 2.0 L boosted gasoline engine has been equipped and tested with both systems at different loads, air fuel ratios, spark timings, fuel pressures and injection timings for SIDI operation and loads, air fuel ratios and spark timings for PFI operation. Regardless of load, air fuel ratio, spark timing, fuel pressure, and injection timing, particle size distribution from SIDI and PFI is shown to be bimodal, exhibiting nucleation and accumulation mode particles. SIDI produces particle numbers that are an order of magnitude greater than PFI. Particle number can be reduced by retarding spark timing and operating the engine lean, both for SIDI and PFI operation. Increasing fuel injection pressure and optimizing injection timing with SIDI also reduces PM emissions. This study provides insight into the differences in PM emissions from boosted SIDI and PFI engines and an evaluation of PM reduction potential by varying engine operating parameters in boosted SIDI and PFI gasoline engines.


Author(s):  
Jianye Su ◽  
Weiyang Lin ◽  
Jeff Sterniak ◽  
Min Xu ◽  
Stanislav V. Bohac

Spark ignition direct injection (SIDI) gasoline engines, especially in downsized boosted engine platforms, are increasing their market share relative to port fuel injection (PFI) engines in U.S., European and Chinese vehicles due to better fuel economy by enabling higher compression ratios and higher specific power output. However, particulate matter (PM) emissions from engines are becoming a concern due to adverse human health and environment effects, and more stringent emission standards. To conduct a PM number and size comparison between SIDI and PFI systems, a 2.0 L boosted gasoline engine has been equipped and tested with both systems at different loads, air fuel ratios, spark timings, fuel pressures and injection timings for SIDI operation and loads, air fuel ratios and spark timings for PFI operation. Regardless of load, air fuel ratio, spark timing, fuel pressure, and injection timing, particle size distribution from SIDI and PFI is shown to be bimodal, exhibiting nucleation and accumulation mode particles. SIDI produces particle numbers that are an order of magnitude greater than PFI. Particle number can be reduced by retarding spark timing and operating the engine lean, both for SIDI and PFI operation. Increasing fuel injection pressure and optimizing injection timing with SIDI also reduces PM emissions. This study provides insight into the differences in PM emissions from boosted SIDI and PFI engines and an evaluation of PM reduction potential by varying engine operating parameters in boosted SIDI and PFI gasoline engines.


2020 ◽  
pp. 146808742091668
Author(s):  
Lis Corral-Gómez ◽  
Guillermo Rubio-Gómez ◽  
David Rodriguez-Rosa ◽  
Andrea Martín-Parra ◽  
Daniel de la Rosa-Urbalejo ◽  
...  

Knock remains one of the main limitations for increasing the efficiency in spark-ignition engines. The use of certain alcohol–gasoline blends is an effective way to either mitigate or eliminate knock, allowing the use of higher compression ratios, therefore increasing the efficiency of spark-ignition engines. Methanol and ethanol are alcohols commonly employed for reducing knock, due to their higher octane number and vaporization heat value. Major attention is being paid recently to butanol and its blends with gasoline since they present similar characteristics to gasoline; however, it was found to be the least knock resistant among the three fuels. In the present work, a comparison between the knock performance of methanol–gasoline, ethanol–gasoline and butanol–gasoline blends is carried out, by volume concentrations up to 20 v/v%. This comparison is made in terms of knock intensity and knock probability. Tests are performed in a single-cylinder, variable-compression ratio, Cooperative Fuel Research engine equipped with port fuel injection system, facilitating the comparison against future results obtained by similar experimental facilities. Results obtained allow to reach meaningful conclusions about the capacity of each blend to mitigate knock.


Sign in / Sign up

Export Citation Format

Share Document