The dual-port fuel injection system for fuel economy improvement in an automotive spark-ignition gasoline engine

2018 ◽  
Vol 138 ◽  
pp. 300-306 ◽  
Author(s):  
Yonggyu Lee ◽  
Seungmook Oh ◽  
Changup Kim ◽  
Junsun Lee ◽  
Kanghun Lee ◽  
...  
Author(s):  
A. K. Kathpal ◽  
Anirudh Gautam ◽  
Avinash Kumar Agarwal ◽  
R. Baskaran

The diesel fuel-injection system of ALCO DLW 251 engine consists of single cylinder injection pumps, delivery pipes, and fuel injector nozzles. Fuel injection into the combustion chamber through multi-hole nozzles delivers designed power and fuel efficiency. The two most important variables in a fuel injection system of a diesel engine are the injection pressure and injection timing. Proper timing of the injection process is essential for satisfactory diesel engine operation and performance. Injection timing needs to be optimised for an engine based on requirements of power, fuel economy, mechanical and thermal loading limitations, smoke and emissions etc. Since each of these requirements varies with the operating conditions, sometimes contrary to the requirements of the other parameters, the map of optimised injection timing can be very complex. The ALCO DLW 251 engine’s fuel injection pump is jerk type to permit accurate metering and timing of the fuel injected. The pump has a ported barrel and constant-stroke plunger incorporating a bottom helix for fuel delivery control with constant injection timing. From the point of view of good power and fuel economy, combustion should take place so that the peak firing pressure occurs at about 10–15° after TDC and is usually a few degrees after combustion starts. For this to happen, fuel should be injected at an appropriate time, depending on Injection delay and Ignition delay. Both these factors are dependent on the speed and load. Changing the operating point of the engine may change either one or both types of delay, altering the moment of start of combustion. Various researchers have shown that both the Injection and the Ignition delay are reduced as the engine speed is decreased resulting in advancement of injection timing at lower speeds (and loads). This condition will be corrected by varying the static injection timing, which can be achieved by providing a modified helix on the plunger to delay the start of fuel injection, for the lower speeds and loads. A new double helix (upper and lower helix) fuel injection pump for the ALCO DLW 251 16 V engine has been designed. The new fuel injection pump has been tested on the engine test cell at Research Designs & Standards Organisation and has shown an improvement of 1.2% in locomotive duty cycle fuel consumption. This paper describes the design & development of double helix fuel injection pump and discusses the engine tests completed to verify the projected improvements in fuel efficiency.


1991 ◽  
Author(s):  
Michael M. Schechter ◽  
Eugene H. Jary ◽  
Michael B. Levin

Author(s):  
Jianye Su ◽  
Weiyang Lin ◽  
Jeff Sterniak ◽  
Min Xu ◽  
Stanislav V. Bohac

Spark ignition direct injection (SIDI) gasoline engines, especially in downsized boosted engine platforms, are increasing their market share relative to port fuel injection (PFI) engines in U.S., European and Chinese vehicles due to better fuel economy by enabling higher compression ratios and higher specific power output. However, particulate matter (PM) emissions from engines are becoming a concern due to adverse human health and environment effects, and more stringent emission standards. To conduct a PM number and size comparison between SIDI and PFI systems, a 2.0 L boosted gasoline engine has been equipped and tested with both systems at different loads, air fuel ratios, spark timings, fuel pressures and injection timings for SIDI operation and loads, air fuel ratios and spark timings for PFI operation. Regardless of load, air fuel ratio, spark timing, fuel pressure, and injection timing, particle size distribution from SIDI and PFI is shown to be bimodal, exhibiting nucleation and accumulation mode particles. SIDI produces particle numbers that are an order of magnitude greater than PFI. Particle number can be reduced by retarding spark timing and operating the engine lean, both for SIDI and PFI operation. Increasing fuel injection pressure and optimizing injection timing with SIDI also reduces PM emissions. This study provides insight into the differences in PM emissions from boosted SIDI and PFI engines and an evaluation of PM reduction potential by varying engine operating parameters in boosted SIDI and PFI gasoline engines.


2004 ◽  
Author(s):  
Tien-Ho Gau ◽  
Yu-Yin Peng ◽  
James H. Wang ◽  
Jerry T. W. Shei ◽  
C. -P. Chien ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document