scholarly journals Subicular Pyramidal Neurons: A Key to Unlock the “Black Box” of Drug Resistance in Temporal Lobe Epilepsy

2019 ◽  
Vol 35 (6) ◽  
pp. 1123-1125 ◽  
Author(s):  
Zhe Hu ◽  
Xinyi Wang ◽  
Kai Zhong
2019 ◽  
Vol 86 (4) ◽  
pp. 626-640 ◽  
Author(s):  
Cenglin Xu ◽  
Yi Wang ◽  
Shuo Zhang ◽  
Jiazhen Nao ◽  
Yao Liu ◽  
...  

2009 ◽  
Vol 111 (6) ◽  
pp. 1237-1247 ◽  
Author(s):  
László Seress ◽  
Hajnalka Ábrahám ◽  
Zsolt Horváth ◽  
Tamás Dóczi ◽  
József Janszky ◽  
...  

Object Hippocampal sclerosis can be identified in most patients with mesial temporal lobe epilepsy (TLE). Surgical removal of the sclerotic hippocampus is widely performed to treat patients with drug-resistant mesial TLE. In general, both epilepsy-prone and epilepsy-resistant neurons are believed to be in the hippocampal formation. The hilar mossy cells of the hippocampal dentate gyrus are usually considered one of the most vulnerable types of neurons. The aim of this study was to clarify the fate of mossy cells in the hippocampus in epileptic humans. Methods Of the 19 patients included in this study, 15 underwent temporal lobe resection because of drug-resistant TLE. Four patients were used as controls because they harbored tumors that had not invaded the hippocampus and they had experienced no seizures. Histological evaluation of resected hippocampal tissues was performed using immunohistochemistry. Results Mossy cells were identified in the control as well as the epileptic hippocampi by using cocaine- and amphetamine-regulated transcript peptide immunohistochemistry. In most cases the number of mossy cells was reduced and thorny excrescences were smaller in the epileptic hippocampi than in controls; however, there was a significant loss of pyramidal cells and a partial loss of granule cells in the same epileptic hippocampi in which mossy cell loss was apparent. The loss of mossy cells could be correlated with the extent of hippocampal sclerosis, patient age at seizure onset, duration of epilepsy, and frequency of seizures. Conclusions In many cases large numbers of mossy cells were present in the hilus of the dentate gyrus when most pyramidal neurons of the CA1 and CA3 areas of the Ammon's horn were lost, suggesting that mossy cells may not be more vulnerable to epileptic seizures than the hippocampal pyramidal neurons.


Seizure ◽  
2021 ◽  
Author(s):  
Andrea Toledo ◽  
Sandra Orozco-Suárez ◽  
Marcos Rosetti ◽  
Lorenzo Maldonado ◽  
Sara I. Bautista ◽  
...  

Gene ◽  
2013 ◽  
Vol 526 (2) ◽  
pp. 449-453 ◽  
Author(s):  
Shabeesh Balan ◽  
Sarada lekshmi ◽  
Koramannil Radha ◽  
Sanish Sathyan ◽  
Joseph Vijai ◽  
...  

1999 ◽  
Vol 82 (2) ◽  
pp. 946-954 ◽  
Author(s):  
Heinz Beck ◽  
Ralf Steffens ◽  
Uwe Heinemann ◽  
Christian E. Elger

Intracellular Ca2+ represents an important trigger for various second-messenger mediated effects. Therefore a stringent control of the intracellular Ca2+ concentration is necessary to avoid excessive activation of Ca2+-dependent processes. Ca2+-dependent inactivation of voltage-dependent calcium currents (VCCs) represents an important negative feedback mechanism to limit the influx of Ca2+ that has been shown to be altered in the kindling model of epilepsy. We therefore investigated the Ca2+-dependent inactivation of high-threshold VCCs in dentate granule cells (DGCs) isolated from the hippocampus of patients with drug-refractory temporal lobe epilepsy (TLE) using the patch-clamp method. Ca2+ currents showed pronounced time-dependent inactivation when no extrinsic Ca2+ buffer was present in the patch pipette. In addition, in double-pulse experiments, Ca2+ entry during conditioning prepulses caused a reduction of VCC amplitudes elicited during a subsequent test pulse. Recovery from Ca2+-dependent inactivation was slow and only complete after 1 s. Ca2+-dependent inactivation could be blocked either by using Ba2+ as a charge carrier or by including bis-( o-aminophenoxy)- N,N,N′,N′-tetraacetic acid (BAPTA) or EGTA in the intracellular solution. The influence of the cytoskeleton on Ca2+-dependent inactivation was investigated with agents that stabilize and destabilize microfilaments or microtubules, respectively. From these experiments, we conclude that Ca2+-dependent inactivation in human DGCs involves Ca2+-dependent destabilization of both microfilaments and microtubules. In addition, the microtubule-dependent pathway is modulated by the intracellular concentration of GTP, with lower concentrations of guanosine triphosphate (GTP) causing increased Ca2+-dependent inactivation. Under low-GTP conditions, the amount of Ca2+-dependent inactivation was similar to that observed in the kindling model. In summary, Ca2+-dependent inactivation was present in patients with TLE and Ammon’s horn sclerosis (AHS) and is mediated by the cytoskeleton similar to rat pyramidal neurons. The similarity to the kindling model of epilepsy may suggest the possibility of altered Ca2+-dependent inactivation in patients with AHS.


Sign in / Sign up

Export Citation Format

Share Document