Atomic-level correlation between the electrochemical performance of an oxygen-evolving catalyst and the effects of CeO2 functionalization

Nano Research ◽  
2021 ◽  
Author(s):  
Yanyan Li ◽  
Wen Luo ◽  
Duojie Wu ◽  
Qi Wang ◽  
Jie Yin ◽  
...  
Author(s):  
William Krakow

In recent years electron microscopy has been used to image surfaces in both the transmission and reflection modes by many research groups. Some of this work has been performed under ultra high vacuum conditions (UHV) and apparent surface reconstructions observed. The level of resolution generally has been at least an order of magnitude worse than is necessary to visualize atoms directly and therefore the detailed atomic rearrangements of the surface are not known. The present author has achieved atomic level resolution under normal vacuum conditions of various Au surfaces. Unfortunately these samples were exposed to atmosphere and could not be cleaned in a standard high resolution electron microscope. The result obtained surfaces which were impurity stabilized and reveal the bulk lattice (1x1) type surface structures also encountered by other surface physics techniques under impure or overlayer contaminant conditions. It was therefore decided to study a system where exposure to air was unimportant by using a oxygen saturated structure, Ag2O, and seeking to find surface reconstructions, which will now be described.


Author(s):  
Kathleen M. Marr ◽  
Mary K. Lyon

Photosystem II (PSII) is different from all other reaction centers in that it splits water to evolve oxygen and hydrogen ions. This unique ability to evolve oxygen is partly due to three oxygen evolving polypeptides (OEPs) associated with the PSII complex. Freeze etching on grana derived insideout membranes revealed that the OEPs contribute to the observed tetrameric nature of the PSIl particle; when the OEPs are removed, a distinct dimer emerges. Thus, the surface of the PSII complex changes dramatically upon removal of these polypeptides. The atomic force microscope (AFM) is ideal for examining surface topography. The instrument provides a topographical view of individual PSII complexes, giving relatively high resolution three-dimensional information without image averaging techniques. In addition, the use of a fluid cell allows a biologically active sample to be maintained under fully hydrated and physiologically buffered conditions. The OEPs associated with PSII may be sequentially removed, thereby changing the surface of the complex by one polypeptide at a time.


Author(s):  
H. Kinney ◽  
M.L. Occelli ◽  
S.A.C. Gould

For this study we have used a contact mode atomic force microscope (AFM) to study to topography of fluidized cracking catalysts (FCC), before and after contamination with 5% vanadium. We selected the AFM because of its ability to well characterize the surface roughness of materials down to the atomic level. It is believed that the cracking in the FCCs occurs mainly on the catalysts top 10-15 μm suggesting that the surface corrugation could play a key role in the FCCs microactivity properties. To test this hypothesis, we chose vanadium as a contaminate because this metal is capable of irreversibly destroying the FCC crystallinity as well as it microporous structure. In addition, we wanted to examine the extent to which steaming affects the vanadium contaminated FCC. Using the AFM, we measured the surface roughness of FCCs, before and after contamination and after steaming.We obtained our FCC (GRZ-1) from Davison. The FCC is generated so that it contains and estimated 35% rare earth exchaged zeolite Y, 50% kaolin and 15% binder.


1996 ◽  
Vol 6 (7) ◽  
pp. 825-829 ◽  
Author(s):  
M. Karlík ◽  
B. Jouffrey
Keyword(s):  

2015 ◽  
Vol 30 (12) ◽  
pp. 1291
Author(s):  
ZHANG Yu-Yue ◽  
LIN Jie ◽  
MIAO Guo-Shuan ◽  
GAO Jian-Feng ◽  
CHEN Chu-Sheng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document