Interaction between hypoviral-regulated fungal virulence factor laccase3 and small heat shock protein Hsp24 from the chestnut blight fungus Cryphonectria parasitica

Author(s):  
Jeesun Chun ◽  
Yo-Han Ko ◽  
Dae-Hyuk Kim
2004 ◽  
Vol 3 (6) ◽  
pp. 1454-1463 ◽  
Author(s):  
Gerrit C. Segers ◽  
Jerome C. Regier ◽  
Donald. L. Nuss

ABSTRACT We previously reported that the chestnut blight fungus Cryphonectria parasitica expresses at least three G-protein α subunits and that Gα subunit CPG-1 is essential for regulated growth, pigmentation, sporulation, and virulence. We now report the cloning and characterization of a C. parasitica regulator of G-protein signaling (RGS) protein, CPRGS-1. The phylogenetic relationship of CPRGS-1 to orthologs from other fungi was inferred and found to be generally concordant with species relationships based on 18S ribosomal sequences and on morphology. However, Hemiascomycotine RGS branch lengths in particular were longer than for their 18S sequence counterparts, which correlates with functional diversification in the signaling pathway. Deletion of cprgs-1 resulted in reduced growth, sparse aerial mycelium, and loss of pigmentation, sporulation, and virulence. Disruption of cprgs-1 was also accompanied by a severe posttranscriptional reduction in accumulation of CPG-1 and Gβ subunit CPGB-1 and severely reduced expression of the hydrophobin-encoding gene cryparin. The changes in phenotype, cryparin expression, and CPGB-1 accumulation resulting from cprgs-1 gene deletion were also observed in a strain containing a mutationally activated copy of CPG-1 but not in strains containing constitutively activated mutant alleles of the other two identified Gα subunits, CPG-2 and CPG-3. Furthermore, cprgs-1 transcript levels were increased in the activated CPG-1 strain but were unaltered in activated CPG-2 and CPG-3 strains. The results strongly suggest that CPRGS-1 is involved in regulation of Gα subunit CPG-1-mediated signaling and establish a role for a RGS protein in the modulation of virulence, conidiation, and hydrophobin synthesis in a plant pathogenic fungus.


2014 ◽  
Vol 27 (1) ◽  
pp. 56-65 ◽  
Author(s):  
Jin-Ho Baek ◽  
Jin-Ah Park ◽  
Jung-Mi Kim ◽  
Jung-Mi Oh ◽  
Seung-Moon Park ◽  
...  

A small heat-shock protein gene, CpHsp24, of Cryphonectria parasitica was selected based on its expression pattern, which showed that it was tannic acid inducible and that its induction was severely hampered by a hypovirus. The predicted protein sequence of CpHsp24 consisted of a hallmark α-crystalline domain flanked by a variable N-terminal and a short C-terminal region. Disruption of CpHsp24 resulted in a slow growth rate under standard growth conditions. The CpHsp24-null mutant showed enhanced sensitivity to heat shock, which was consistent with Northern and Western analyses displaying the heat-shock induction of the CpHsp24 gene and protein, respectively. Virulence tests on the excised bark revealed a severe decrease in the necrotic area of the CpHsp24-null mutant. When the hypovirus was transferred, virus-containing CpHsp24-null progeny displayed severely retarded growth patterns with hypovirulent characteristics of reduced pigmentation and sporulation. Because the tannic-acid-inducible and hypoviral-suppressible expression and the severely impaired virulence are also characteristics of the laccase3 gene (lac3), lac3 expression in the CpHsp24-null mutant was also examined. The resulting lac3 induction was severely affected in the CpHsp24-null mutant, suggesting that CpHsp24 is important for lac3 induction and that CpHsp24 may act as a molecular chaperone for the lac3 protein.


2008 ◽  
Vol 21 (12) ◽  
pp. 1582-1590 ◽  
Author(s):  
Hea-Jong Chung ◽  
Bo-Ra Kwon ◽  
Jung-Mi Kim ◽  
Seung-Moon Park ◽  
Jong-Kun Park ◽  
...  

A new laccase gene (lac3) from the chestnut blight fungus Cryphonectria parasitica was induced by the presence of tannic acid, which is abundant in the bark of chestnut trees and is assumed to be one of the major barriers against pathogen infection. However, other commonly known laccase inducers, including ferulic acid, 2,5-xylidine, catechol, and pH, did not induce lac3 transcription. Moreover, the hypovirus modulated the induction of lac3 transcription, abolishing the transcriptional induction of the lac3 gene by tannic acid. A functional analysis of lac3 using a lac3-null mutant indicated that fungal growth and other morphological characteristics, including pigmentation and sporulation, were not affected. However, a virulence assay indicated that the loss of function of a tannic acid–inducible and hypoviral-regulated laccase resulted in reduced virulence without detectable changes in the morphological features. The constitutive expression of lac3 resulted in no significant differences in the necrotic lesions from those caused by the wild type, but its expression in the presence of the hypovirus led to larger lesions than those caused by the hypovirulent strain. These results suggest that the lac3 gene product may not be the only determinant of fungal virulence in chestnut trees but is an important factor.


2007 ◽  
Vol 6 (8) ◽  
pp. 1286-1298 ◽  
Author(s):  
Fuyou Deng ◽  
Todd D. Allen ◽  
Bradley I. Hillman ◽  
Donald L. Nuss

ABSTRACT Infection of the chestnut blight fungus, Cryphonectria parasitica, by hypovirus CHV1-EP713 or by reovirus MyRV1-Cp9B21 or MyRV2-CpC18 results in reduced fungal virulence (hypovirulence). However, additional phenotypic changes caused by the two groups of mycoviruses are quite different. We now report that the loss of female fertility and the resulting absence of virus transmission through sexual spores observed after hypovirus infection was not observed for reovirus-infected C. parasitica. Consistent with this result, expression of two genes involved in sexual reproduction, the pheromone precursor gene, Mf2/1, and the yeast STE12-like transcriptional factor gene, cpst12, was less reduced in reovirus-infected strains than in the hypovirus CHV1-EP713-infected strain. Analysis with a custom microarray cDNA chip containing expressed sequence tag clones representing approximately 2,200 unique C. parasitica genes identified 140 and 128 host genes that were responsive to MyRV1-Cp9B21 or MyRV2-CpC18 infection, respectively. Comparison of these virus-responsive genes revealed an overlap of 85 genes, even though the nucleotide sequence identity for the two reoviruses is less than 50%. Significantly, 84 of the 85 genes were altered in the same direction. Further comparison revealed that 51% and 48% of the MyRV1-Cp9B21- and MyRV2-CpC18-responsive genes were also responsive to CHV1-EP713 infection. Finally, similar to results reported for CHV1-EP713 infection, a high percentage (59% and 66%) of the reovirus-responsive genes were also differentially expressed following disruption of the cellular G-protein signal transduction pathway. These data support the hypothesis that hypovirus and reovirus infections perturb common and specific C. parasitica regulatory pathways to cause hypovirulence and distinct sets of phenotypic changes.


1999 ◽  
Vol 73 (2) ◽  
pp. 985-992 ◽  
Author(s):  
Baoshan Chen ◽  
Donald L. Nuss

ABSTRACT We report the construction of a full-length infectious cDNA clone for hypovirus CHV1-Euro7, which is associated with reduced virulence (hypovirulence) of the chestnut blight fungus Cryphonectria parasitica. Field strains infected with CHV1-Euro7 are more virulent and exhibit less severe phenotypic changes (hypovirulence-associated traits) than strains infected with the prototypic hypovirus CHV1-EP713, for which the first infectious cDNA clone was developed. These differences exist even though the two hypoviruses show extensive sequence identities: 87 to 93% and 90 to 98% at the nucleotide and amino acid levels, respectively. The relative contributions of viral and host genomes to phenotypic traits associated with hypovirus infection were examined by transfecting synthetic transcripts of the two hypovirus cDNAs independently into two different virus-free C. parasitica strains, EP155 and Euro7(−v). Although the contribution of the viral genome was clearly predominant, the final magnitude and constellation of phenotypic changes were a function of contributions by both genomes. The high level of sequence identity between the two hypoviruses also allowed construction of viable chimeras and mapping of the difference in symptom expression observed for the two viruses to the open reading frame B coding domain. Implications of these results for engineering enhanced biological control and elucidating the basis for hypovirus-mediated attenuation of fungal virulence are discussed.


Neurology ◽  
2010 ◽  
Vol 74 (6) ◽  
pp. 502-506 ◽  
Author(s):  
S. J. Kolb ◽  
P. J. Snyder ◽  
E. J. Poi ◽  
E. A. Renard ◽  
A. Bartlett ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document