Some aspects on plastic deformation of copper and copper–titanium carbide powder metallurgy composite preforms during cold upsetting

2008 ◽  
Vol 1 (4) ◽  
pp. 189-209 ◽  
Author(s):  
R. Narayanasamy ◽  
V. Anandakrishnan ◽  
K. S. Pandey
2016 ◽  
Vol 879 ◽  
pp. 145-150
Author(s):  
Kei Ameyama ◽  
Sanjay Kumar Vajpai ◽  
Mie Ota

This paper presents the novel microstructure design, called Harmonic Structure, which gives structural metallic materials outstanding mechanical properties through an innovative powder metallurgy process. Homogeneous and ultra-fine grain (UFG) structure enables the materials high strength. However, such a “Homo-“ and “UFG” microstructure does not, usually, satisfy the need to be both strong and ductile, due to the plastic instability in the early stage of the deformation. As opposed to such a “Homo-and UFG“ microstructure, “Harmonic Structure” has a heterogeneous microstructure consisting of bimodal grain size together with a controlled and specific topological distribution of fine and coarse grains. In other words, the harmonic structure is heterogeneous on micro-but homogeneous on macro-scales. In the present work, the harmonic structure design has been applied to pure metals and alloys via a powder metallurgy route consisting of controlled severe plastic deformation of the corresponding powders by mechanical milling or high pressure gas milling, and subsequent consolidation by SPS. At a macro-scale, the harmonic structure materials exhibited superior combination of strength and ductility as compared to their homogeneous microstructure counterparts. This behavior was essentially related to the ability of the harmonic structure to promote the uniform distribution of strain during plastic deformation, leading to improved mechanical properties by avoiding or delaying localized plastic instability.


Author(s):  
Ramkumar Thulasiram ◽  
Selvakumar Mani ◽  
Narayanasamy Pandiarajan ◽  
Balasundar Pandiarajan

Materials ◽  
2019 ◽  
Vol 12 (22) ◽  
pp. 3724 ◽  
Author(s):  
Jana Bidulská ◽  
Róbert Bidulský ◽  
Marco Actis Grande ◽  
Tibor Kvačkaj

In powder metallurgy (PM), severe plastic deformation (SPD) is a well-known technological solution to achieve interesting properties. However, the occurrence of pores in the final product may limit these properties. Also, for a given type of microstructure, the stereometric parameters of the pore structures, such as shape (represented by Aspect and Dcircle) and distribution (fshape, and fcircle), decisively affect the final properties. The influence of different processing routes (pressing, sintering and equal channel angular pressing (ECAP)) on pore structures in an aluminum PM alloy is discussed. The nature of porosity, porosity evolution and its behavior is explored. The correlation between pore size and morphology is also considered. The final pore structure parameters (Aspect, Dcircle, fshape, and fcircle) of studied aluminum alloys produced by different processing routes depends on the different formation routes.


2011 ◽  
Vol 672 ◽  
pp. 133-136
Author(s):  
Nicolaie Jumate ◽  
Ioan Vida-Simiti ◽  
Dorel Nemeş ◽  
György Thalmaier ◽  
Niculina Sechel ◽  
...  

The paper presents a preliminary study on the obtaining of a composite powder by an electrolytic method. The composite powder particles are composed of iron nickel alloy that represents the matrix of the composite, and titanium carbide as the reinforcement. The matrix was obtained by electrolytic co-deposition from pure iron and nickel, in form of consumable electrodes. The titanium carbide powder is in suspension in the electrolyte. By the migration of metallic ions towards the cathode, the iron- nickel alloy is formed and, by simultaneously driving the carbide particles found in the electrolyte onto the cathode, the composite powder is obtained. The resulted composite powders were characterized by optical and electron microscopy. The influence of obtaining conditions over the morphology and structure of composite powders is emphased.


1973 ◽  
Vol 12 (1) ◽  
pp. 23-31
Author(s):  
M. S. Koval'chenko ◽  
L. F. Ochkas

Sign in / Sign up

Export Citation Format

Share Document