The MYB transcription factor StMYBA1 from potato requires light to activate anthocyanin biosynthesis in transgenic tobacco

2017 ◽  
Vol 60 (1) ◽  
pp. 93-101 ◽  
Author(s):  
Yuhui Liu ◽  
Li Wang ◽  
Junlian Zhang ◽  
Bin Yu ◽  
Jing Wang ◽  
...  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Kaijie Zheng ◽  
Xutong Wang ◽  
Yating Wang ◽  
Shucai Wang

Abstract Background Trichome initiation in Arabidopsis is regulated by a MYB-bHLH-WD40 (MBW) transcriptional activator complex formed by the R2R3 MYB transcription factor GLABRA1 (GL1), MYB23 or MYB82, the bHLH transcription factor GLABRA3 (GL3), ENHANCER OF GLABRA3 (EGL3) or TRANSPARENT TESTA8 (TT8), and the WD40-repeat protein TRANSPARENT TESTA GLABRA1 (TTG1). However, the functions of the rice homologs of the MBW complex proteins remained uncharacterized. Results Based on amino acid sequence identity and similarity, and protein interaction prediction, we identified OsGL1s, OsGL3s and OsTTG1s as rice homologs of the MBW complex proteins. By using protoplast transfection, we show that OsGL1D, OsGL1E, OsGL3B and OsTTG1A were predominantly localized in the nucleus, OsGL3B functions as a transcriptional activator and is able to interact with GL1 and TTG1. By using yeast two-hybrid and protoplast transfection assays, we show that OsGL3B is able to interact with OsGL1E and OsTTG1A, and OsGL1E and OsTTG1A are also able to interact with GL3. On the other hand, we found that OsGL1D functions as a transcription activator, and it can interact with GL3 but not OsGL3B. Furthermore, our results show that expression of OsTTG1A in the ttg1 mutant restored the phenotypes including alternations in trichome and root hair formation, seed color, mucilage production and anthocyanin biosynthesis, indicating that OsTTG1A and TTG1 may have similar functions. Conclusion These results suggest that the rice homologs of the Arabidopsis MBW complex proteins are able to form MBW complexes, but may have conserved and non-conserved functions.


2022 ◽  
Vol 293 ◽  
pp. 110674
Author(s):  
Yiguang Wang ◽  
Li-Jie Zhou ◽  
Yuxi Wang ◽  
Zhiqiang Geng ◽  
Baoqing Ding ◽  
...  

2020 ◽  
Author(s):  
Kaihui Zhai ◽  
Guangwu Zhao ◽  
Hongye Jiang ◽  
Caixia Sun ◽  
Jingyu Ren

Abstract Background MYB transcription factors are involved in many biological processes, including metabolism, development and responses to biotic and abiotic stresses. In our previous work, a new MYB transcription factor gene, ZmMYB59 was induced by deep sowing and down-regulated during maize seed germination via Real-Time PCR. However, there are few reports on seed germination regulated by MYB proteins and the functions of ZmMYB59 remain unknown. Results In this study, to examine its functions, Agrobacterium -mediated transformation was exploited to generate ZmMYB59 transgenic tobacco and rice. In T 2 generation transgenic tobacco, germination rate, germination index, vigor index and hypocotyl length were significantly decreased by 25.0~50.9%, 34.5~54.4%, 57.5~88.3% and 21.9~31.2% compared to wild-type (WT) lines. In T 2 generation transgenic rice, germination rate, germination index, vigor index and mesocotyl length were notably reduced by 39.1~53.8%, 51.4~71.4%, 52.5~74.0% and 28.3~41.5%, respectively. On this basis, relative physiological indicators were determined. The activities of catalase, peroxidase, superoxide dismutase, ascorbate peroxidase and proline content of transgenic lines were significantly lower than those of WT, suggesting that ZmMYB59 reduced their antioxidant capacity. As well, ZmMYB59 expression extremely inhibited the synthesis of gibberellin A1 (GA 1 ) and cytokinin (CTK), and promoted the synthesis of abscisic acid (ABA) concurrently, which implied that seed germination was repressed by ZmMYB59 in hormone levels. Furthermore, cell length and cell number of hypocotyl/mesocotyl in transgenic plants were notably decreased. Conclusions Taken together, it proposed that ZmMYB59 plays a negative regulation during seed germination in tobacco and rice, which also contributes to illuminate the molecular mechanisms regulated by MYB transcription factors.


Molecules ◽  
2018 ◽  
Vol 24 (1) ◽  
pp. 92 ◽  
Author(s):  
Ziguo Zhu ◽  
Guirong Li ◽  
Li Liu ◽  
Qingtian Zhang ◽  
Zhen Han ◽  
...  

In grapevine, the MYB transcription factors play an important role in the flavonoid pathway. Here, a R2R3-MYB transcription factor, VvMYBC2L2, isolated from Vitis vinifera cultivar Yatomi Rose, may be involved in anthocyanin biosynthesis as a transcriptional repressor. VvMYBC2L2 was shown to be a nuclear protein. The gene was shown to be strongly expressed in root, flower and seed tissue, but weakly expressed during the fruit development in grapevine. Overexpressing the VvMYBC2L2 gene in tobacco resulted in a very marked decrease in petal anthocyanin concentration. Expression analysis of flavonoid biosynthesis structural genes revealed that chalcone synthase (CHS), dihydroflavonol 4-reductase (DFR), leucoanthocyanidin reductase (LAR) and UDP glucose flavonoid 3-O-glucosyl transferase (UFGT) were strongly down-regulated in the VvMYBC2L2-overexpressed tobacco. In addition, transcription of the regulatory genes AN1a and AN1b was completely suppressed in transgenic plants. These results suggested that VvMYBC2L2 plays a role as a negative regulator of anthocyanin biosynthesis.


2019 ◽  
Vol 61 (2) ◽  
pp. 318-330 ◽  
Author(s):  
Ding Huang ◽  
Zhouzhou Tang ◽  
Jialing Fu ◽  
Yue Yuan ◽  
Xiuxin Deng ◽  
...  

Abstract Anthocyanins are preferentially accumulated in certain tissues of particular species of citrus. A R2R3-MYB transcription factor (named Ruby1) has been well documented as an activator of citrus anthocyanin biosynthesis. In this study, we characterized CsMYB3, a transcriptional repressor that regulates anthocyanin biosynthesis in citrus. CsMYB3 was expressed in anthocyanin-pigmented tissues, and the expression was closely associated with that of Ruby1, which is a key anthocyanin activator. Overexpression of CsMYB3 in Arabidopsis resulted in a decrease in anthocyanins under nitrogen stress. Overexpression of CsMYB3 in the background of CsRuby1-overexpressing strawberry and Arabidopsis reduced the anthocyanin accumulation level. Transient promoter activation assays revealed that CsMYB3 could repress the activation capacity of the complex formed by CsRuby1/CsbHLH1 for the anthocyanin biosynthetic genes. Moreover, CsMYB3 could be transcriptionally activated by CsRuby1 via promoter binding, thus forming an ‘activator-and-repressor’ loop to regulate anthocyanin biosynthesis in citrus. This study shows that CsMYB3 plays a repressor role in the regulation of anthocyanin biosynthesis and proposes an ‘activator-and-repressor’ loop model constituted by CsRuby1 and CsMYB3 in the regulation of anthocyanin biosynthesis in citrus.


Sign in / Sign up

Export Citation Format

Share Document