Distributions and Source Identification of the Major Ions in Zhujiang River, Southwest China: Examining the Relationships Between Human Perturbations, Chemical Weathering, Water Quality and Health Risk

2020 ◽  
Vol 12 (4) ◽  
pp. 849-862 ◽  
Author(s):  
Jinke Liu ◽  
Guilin Han
PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e6578 ◽  
Author(s):  
Jie Zeng ◽  
Guilin Han ◽  
Qixin Wu ◽  
Yang Tang

To investigate the sources and spatial-temporal distribution of dissolved heavy metals in river water, and to evaluate the water quality, a total of 162 water samples were collected from 81 key sampling points in high and low flow seasons separately in the Zhujiang River, Southwest China. Ten dissolved heavy metals (V, Cr, Mn, Co, Ni, Cu, Mo, Cd, Ba, and Pb) in the Zhujiang River water exhibit little variation at temporal scale, but vary with a significant spatial heterogeneity. Furthermore, different metals present different variation trends along the main channel of the Zhujiang River. Our results suggest that Ba (14.72 μg L−1 in low flow season and 12.50 μg L−1 in high flow season) and Cr (6.85 μg L−1 in low flow season and 7.52 μg L−1 in high flow season) are consistently the most abundant metals in the two sampling periods. According to the water quality index (WQI values ranged from 1.3 to 43.9) and health risk assessment, metals investigated in Zhujiang River are below the hazard level (all hazard index (HI) < 1). Application of statistical approaches, including correlation matrix and principal component analysis (PCA), identify three principal components that account for 61.74% of the total variance, the results conclude that the anthropogenic heavy metals (V, Cr, Ni, and Cu) are greatly impacted by the dilution effect, and the heavy metals in Zhujiang River are mainly presented a natural sources signature from the perspective of entire basin. Moreover, our results reveal that the estimated export budget of several heavy metals including V (735.6 t year−1), Cr (1,561.1 t year−1), Ni (498.2 t year−1), and Mo (118.9 t year−1) to the ocean are higher than the world average.


Water ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1231
Author(s):  
Xin Ge ◽  
Qixin Wu ◽  
Zhuhong Wang ◽  
Shilin Gao ◽  
Tao Wang

Hydrochemistry and sulfur isotope (δ34S–SO42−) of Chishui River watershed in Southwest China were measured to identify the sources of riverine solutes, the potential impact of human activities, water quality, and health risk. The main findings indicated that the HCO3− (2.22 mmol/L) and Ca2+ (1.54 mmol/L) were the major ions, with the cation order of Ca2+ (71 ± 6%) > Mg2+ (21 ± 6%) > Na+ + K+ (8 ± 3%) and the anion sequence of HCO3− (55 ± 9%) > SO42− (41 ± 9%) > Cl− (4 ± 3%). The riverine δ34S–SO42− values fluctuated from −7.79‰ to +22.13‰ (average +4.68‰). Overall, the water samples from Chishui River presented a hydrochemical type of Calcium–Bicarbonate. The stoichiometry and PCA analysis extracted three PCs that explained 79.67% of the total variances. PC 1 with significantly positive loadings of K+, Mg2+, F−, HCO3− and relatively strong loading of Ca2+ revealed the natural sources of rock weathering inputs (mainly carbonate). PC 2 (Na+ and Cl−) was primarily explained as atmospheric contribution, while the human inputs were assuaged by landscape setting and river water mixing processes. The strongest loadings of SO42− and NO3− were found in PC 3, which could be defined as the anthropogenic inputs. The H2SO4–involved weathering processes significantly impacted (facilitated weathering) the concentrations of riverine total ions. Sulfur isotope compositions further indicated that riverine SO42− were mainly controlled by anthropogenic inputs SO42− compared to the sulfide oxidation derived SO42−, and the atmospheric contribution was very limited. The results of risk and water quality assessment demonstrated that Chishui River water was desirable for irrigation and drinking purposes due to low hazard quotient values (<1, ignorable risk), but long–term monitoring is still worthy under the circumstances of global environmental change.


Sign in / Sign up

Export Citation Format

Share Document