scholarly journals Geochemical characteristics of dissolved heavy metals in Zhujiang River, Southwest China: spatial-temporal distribution, source, export flux estimation, and a water quality assessment

PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e6578 ◽  
Author(s):  
Jie Zeng ◽  
Guilin Han ◽  
Qixin Wu ◽  
Yang Tang

To investigate the sources and spatial-temporal distribution of dissolved heavy metals in river water, and to evaluate the water quality, a total of 162 water samples were collected from 81 key sampling points in high and low flow seasons separately in the Zhujiang River, Southwest China. Ten dissolved heavy metals (V, Cr, Mn, Co, Ni, Cu, Mo, Cd, Ba, and Pb) in the Zhujiang River water exhibit little variation at temporal scale, but vary with a significant spatial heterogeneity. Furthermore, different metals present different variation trends along the main channel of the Zhujiang River. Our results suggest that Ba (14.72 μg L−1 in low flow season and 12.50 μg L−1 in high flow season) and Cr (6.85 μg L−1 in low flow season and 7.52 μg L−1 in high flow season) are consistently the most abundant metals in the two sampling periods. According to the water quality index (WQI values ranged from 1.3 to 43.9) and health risk assessment, metals investigated in Zhujiang River are below the hazard level (all hazard index (HI) < 1). Application of statistical approaches, including correlation matrix and principal component analysis (PCA), identify three principal components that account for 61.74% of the total variance, the results conclude that the anthropogenic heavy metals (V, Cr, Ni, and Cu) are greatly impacted by the dilution effect, and the heavy metals in Zhujiang River are mainly presented a natural sources signature from the perspective of entire basin. Moreover, our results reveal that the estimated export budget of several heavy metals including V (735.6 t year−1), Cr (1,561.1 t year−1), Ni (498.2 t year−1), and Mo (118.9 t year−1) to the ocean are higher than the world average.


2021 ◽  
Author(s):  
Liming Deng ◽  
Asfandyar Shahab ◽  
He Xiao ◽  
Jieyue Li ◽  
Saeed Rad ◽  
...  

Abstract Lijiang River is an essential drinking water source and natural scenery in the Guilin City. For the first time, implications of rainstorm were taken into consideration by investigating spatial and temporal variation of dissolved heavy metals (HMs) in the Lijiang River water. A total of 68 water samples were collected during low flow (normal) season and high flow (rainstorm) season from 34 sampling sites. Dissolved HMs including Cr, Mn, Co, Cu, Zn, As, Cd, Sb, and Pb were found to meet the respective drinking water standards, while higher concentration was observed after the rainstorm season, except for Cr. Multivariate statistical analysis showed Co, Cu, Cr, Zn, Sb, and Pb in normal season are mainly controlled by anthropogenic sources. Furthermore, higher concentration of Mn, Cu, Cd, Pb, Co and Zn during the high flow season is attributed to rainstorm. The water quality index (WQI) showed good grades, and comparatively lower in rainstorm season. The results of health risk assessment revealed that HMs in Lijiang River pose limited health risk, however, As poses potential health risk during rainstorm season. It is suggested to adopt preventive measures in mining activities and industrial waste-water discharge at the river’s upstream and downstream.



Water ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2078
Author(s):  
Jie Zeng ◽  
Guilin Han ◽  
Mingming Hu ◽  
Yuchun Wang ◽  
Jinke Liu ◽  
...  

Dissolved heavy metals (HMs), derived from natural and anthropogenic sources, are an important part of aquatic environment research and gain more international concern due to their acute toxicity. In this study, the geochemistry of dissolved HMs was analyzed in the upper Three Gorges Reservoir (TGR) of the Yangtze River (YZR) watershed to explore their distribution, status, and sources and further evaluate the water quality and HM-related risks. In total, 57 water samples were collected from the main channel and tributaries of the upper TGR. The concentrations of eight HMs, namely V, Ni, Cu, Zn, As, Mo, Cd, and Pb, were measured by ICP-MS. The mean concentrations (in μg/L) of eight HMs decreased in the order: As (1.46), V (1.44), Ni (1.40), Mo (0.94), Cu (0.86), Zn (0.63), Pb (0.03), and Cd (0.01). The concentrations of most HMs were 1.4~8.1 times higher than that in the source area of the YZR, indicating a potential anthropogenic intervention in the upper TGR. Spatially, the concentrations of V, Cu, As, and Pb along the main channel gradually decreased, while the others were relatively stable (except for Cd). The different degrees of variations in HM concentrations were also found in tributaries. According to the correlation analysis and principal component (PC) analysis, three PCs were identified and explained 75.1% of the total variances. combined with the concentrations of each metal, PC1 with high loadings of V, Ni, As, and Mo was considered as the main contribution of human inputs, PC2 (Cu and Pb) was primarily attributed to the contribution of mixed sources of human emissions and natural processes, and Zn and Cd in PC3 were controlled by natural sources. Water quality assessment suggested the good water quality (meeting the requirements for drinking purposes) with WQI values of 14.1 ± 3.4 and 11.6 ± 3.6 in the main channel and tributaries, respectively. Exposure risk assessment denoted that the health effects of selected HMs on the human body were limited (hazard index, HI < 1), but the potential risks of V and As with HI > 0.1 were non-negligible, especially for children. These findings provide scientific support for the environmental management of the upper TGR region and the metal cycle in aquatic systems.



2021 ◽  
Author(s):  
Qian Zhang ◽  
James Webber ◽  
Douglas Moyer ◽  
Jeffrey Chanat

&lt;p&gt;A number of statistical approaches have been developed to quantify the overall trend in river water quality, but most approaches are not intended for reporting separate trends for different flow conditions. We propose an approach called FN&lt;sub&gt;2Q&lt;/sub&gt;, which is an extension of the flow-normalization (FN) procedure of the well-established WRTDS (&amp;#8220;Weighted Regressions on Time, Discharge, and Season&amp;#8221;) method. The FN&lt;sub&gt;2Q&lt;/sub&gt;&amp;#160;approach provides a daily time series of low-flow and high-flow FN flux estimates that represent the lower and upper half of daily riverflow observations that occurred on each calendar day across the period of record. These daily estimates can be summarized into any time period of interest (e.g., monthly, seasonal, or annual) for quantifying trends. The proposed approach is illustrated with an application to a record of total nitrogen concentration (632 samples) collected between 1985 and 2018 from the South Fork Shenandoah River at Front Royal, Virginia (USA). Results show that the overall FN flux of total nitrogen has declined in the period of 1985&amp;#8211;2018, which is mainly attributable to FN flux decline in the low-flow class. Furthermore, the decline in the low-flow class was highly correlated with wastewater effluent loads, indicating that the upgrades of treatment technology at wastewater treatment facilities have likely led to water-quality improvement under low-flow conditions. The high-flow FN flux showed a spike around 2007, which was likely caused by increased delivery of particulate nitrogen associated with sediment transport. The case study demonstrates the utility of the FN&lt;sub&gt;2Q&lt;/sub&gt;&amp;#160;approach toward not only characterizing the changes in river water quality but also guiding the direction of additional analysis for capturing the underlying drivers. The FN&lt;sub&gt;2Q&lt;/sub&gt; approach (and the published code) can easily be applied to widely available river monitoring records to quantify water-quality trends under different flow conditions to enhance understanding of river water-quality dynamics. &lt;span&gt;(Journal article: https://doi.org/10.1016/j.scitotenv.2020.143562; R code and data release: https://doi.org/10.5066/P9LBJEY1).&lt;/span&gt;&lt;/p&gt;



Author(s):  
Jose Simmonds ◽  
Juan A. Gómez ◽  
Agapito Ledezma

This article contains a multivariate analysis (MV), data mining (DM) techniques and water quality index (WQI) metrics which were applied to a water quality dataset from three water quality monitoring stations in the Petaquilla River Basin, Panama, to understand the environmental stress on the river and to assess the feasibility for drinking. Principal Components and Factor Analysis (PCA/FA), indicated that the factors which changed the quality of the water for the two seasons differed. During the low flow season, water quality showed to be influenced by turbidity (NTU) and total suspended solids (TSS). For the high flow season, main changes on water quality were characterized by an inverse relation of NTU and TSS with electrical conductivity (EC) and chlorides (Cl), followed by sources of agricultural pollution. To complement the MV analysis, DM techniques like cluster analysis (CA) and classification (CLA) was applied and to assess the quality of the water for drinking, a WQI.



Sign in / Sign up

Export Citation Format

Share Document