hazard quotient
Recently Published Documents


TOTAL DOCUMENTS

381
(FIVE YEARS 302)

H-INDEX

13
(FIVE YEARS 6)

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Yahong Zhang ◽  
Jiaqi Qin ◽  
Yan Wang ◽  
Tongning Zhou ◽  
Ningchuan Feng ◽  
...  

AbstractThe berries of Lycium barbarum L. (Goji) are widely used as a Chinese traditional herbal medicine and functional food because of their reported beneficial pharmacological effects. However, there are reports of Goji berries being contaminated by chemical residues that could pose a hazard to humans. In this study, samples of L. barbarum L. berries were collected from plantations in a genuine production area and supermarkets in Ningxia, China. The major hazardous chemicals, including pesticides (dichlorvos, omethoate, cypermethrin, fenvalerate, malathion, and deltamethrin) and metals (lead (Pb), cadmium (Cd), copper (Cu), nickel (Ni), zinc (Zn), and arsenic (As)), were quantified by gas chromatography and inductively coupled plasma-optical emission spectrometry. In addition, associated daily exposures and health risks were determined using deterministic and probabilistic assessments. The levels of five pesticides from the plantation samples were considerably lower than the maximum residue limits; only dichlorvos was detected in the supermarket samples, and deltamethrin was not detected in any samples. Cu, Zn, As, Pb, Ni and Cd were detected in samples from both sources. The hazard quotient values of individual hazardous chemicals and the hazard index of combined hazardous chemicals were considerably less than 1, indicating the absence of a non-carcinogenic effect of hazardous chemical exposures through Goji berry consumption. The R value of As was much less than 10–6, which shows that consumption of the Goji berries had no obvious carcinogenic risks. The potentially harmful effects of the L. barbarum L. are more likely from berries obtained from plantations than those from supermarkets, and metal exposure is more dangerous than pesticide exposure. However, on the basis of our analysis, no population would be exposed hazardous chemicals exceeding existing standards, and the factors most affecting the health risk were exposure frequency and As content.


Toxics ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 32
Author(s):  
Qianqian Xue ◽  
Yingze Tian ◽  
Xinyi Liu ◽  
Xiaojun Wang ◽  
Bo Huang ◽  
...  

Ambient PM2.5-bound ions, OC, EC, heavy metals (HMs), 18 polycyclic aromatic hydrocarbons (PAHs), 7 hopanes, and 29 n-alkanes were detected at Tuoji Island (TI), the only marine background atmospheric monitoring station in North China. The annual PM2.5 average concentration was 47 ± 31 μg m−3, and the average concentrations of the compositions in PM2.5 were higher in cold seasons than in warm seasons. The cancer and non-cancer risks of HMs and PAHs in cold seasons were also higher than in warm seasons. BaP, Ni, and As dominated the ∑HQ (hazard quotient) in cold seasons, while the non-carcinogenic risk in warm seasons was mainly dominated by Ni, Mn, and As. The ILCR (incremental lifetime cancer risk) values associated with Cr and As were higher in the cold season, while ILCR-Ni values were higher in the warm season. The backward trajectory was calculated to identify the potential directions of air mass at TI. Through the diagnostic ratios of organic and inorganic tracers, the sources of particulate matter in different directions were judged. It was found that ship emissions and sea salt were the main sources from marine directions, while coal combustion, vehicles emissions, industrial process, and secondary aerosols were the main source categories for inland directions. In addition, potential HM and PAH risks from inland and marine directions were explored. The non-cancerous effects of TI were mainly affected by inland transport, especially from the southeast, northwest, and west-northwest. The cancerous effects of TI were mainly simultaneously affected by the inland direction and marine direction of transport.


Author(s):  
Zahra Baberi ◽  
Abooalfazl Azhdarpoor ◽  
Mohammad Hoseini ◽  
Mohammadali Baghapour ◽  
Zahra Derakhshan ◽  
...  

The aim of this study is to investigate the concentration of Benzene, Toluene, Ethylbenzene, and Xylene (BTEX) compounds in the indoor air of residential-commercial complexes and to compare it with other residential buildings (control) as well as to assess the carcinogenicity and non-carcinogenicity risk of these pollutants. BTEX concentration was investigated in the indoor air of 30 ground floor restaurants, 30 upper residential units of the complexes, 20 adjacent residential units (control), and their corridors. The mean BTEX concentration measured in the upper residential units was reported higher than in the control residential units, though they were not significantly different. The lifetime cancer risk (LTCR) value calculated for benzene in the upper residential units was lower than 10−4 and higher than 10−6 across all ages, indicating a carcinogenicity risk. Furthermore, the mean hazard quotient (HQ) for all compounds was obtained lower than 1, suggesting no concern about the non-carcinogenicity risk of these compounds in the studied region. Nevertheless, considering the sources of benzene production in the indoor air as well as the carcinogenicity of these pollutants and the risk they pose in human health, application towards the reduction of the sources and concentration of benzene in the indoor air are necessary.


2022 ◽  
Author(s):  
Manal El-Sadaawy ◽  
Ghada F. El-Said ◽  
Mona Khalil ◽  
Fadia A.M. Morsy ◽  
Suzan E.O. Draz

Abstract Heavy metal pollution and its environmental and human risks have become one of the most important global environmental problems. In the current study, the potential heavy metals ecological risks and their pollution status were assessed in five important harbors (Sidi Krir, Dekhila, Western, Damietta, and Port Said) along the Egyptian coast of the Mediterranean Sea. Twenty-six sediment samples were collected from five harbors, where eight heavy metals (Fe, Mn, Zn, Cu, Ni, Cr, Pb and Cd) were identified as well as their texture and geochemistry. To gain deeper insights into the human and ecological hazards of the heavy metals, thirteen ecological indices, sediment quality guidelines and multivariate analysis as well as two pathways of exposures to non- carcinogenic and carcinogenic risk of heavy metals for children and adults were evaluated. The data shown that Sidi Kriri harbor recorded the lowest values for heavy metals, for Cu, while Western Harbor had the highest average for Zn Multivariate analysis revealed the contribution of heavy metals to sediment contamination and the geochemical characteristics as well as nearby sources of pollution. Geo-accumulation index, Contamination factor, Toxic units, sum of toxic units, sediment modified hazard quotient, and sediment hazard quotients reflected the significant contribution of Cd to sediments along all harbors. Non-carcinogenic hazard risk index (HI) values along the harbors gave the order: Western> Port Said> Damietta> Dekhila> Sidi Krir. Also, TLCR values for children and adults indicated the irregularly high abundance of heavy metals in harbor sediments that may cause adverse public health effects.


Author(s):  
Xiaocui Chen ◽  
Tony J. Ward ◽  
Chinmoy Sarkar ◽  
Kin-Fai Ho ◽  
Chris Webster

AbstractHeterogeneity between ambient and personal exposure to heavy metals has been documented. However, few studies have investigated potential health risks posed by inhalational exposure to airborne heavy metal(loid)s at the individual level. A total of 404 personal fine particles (PM2.5) samples were collected from 61 adult residents (aged 18–63 years) in Hong Kong during 2014–2015. Heavy metal(loid)s were analyzed using energy dispersive X-ray fluorescence. Among the analyzed heavy metal(loid)s, zinc (Zn) was the most abundant component in personal PM2.5, followed by lead (Pb), copper (Cu), and vanadium (V); cobalt (Co) and cadmium (Cd) were not detectable. Health risks of personal exposure to heavy metal(loid)s via inhalation were assessed for adults, including non-cancer risks that were characterized by hazard quotient (HQ) and hazard index (HI). The results indicated that non-cancer risks of heavy metal(loid)s were attributable to Cu, with a 95th HQ value > 1. Arsenic (As) and hexavalent chromium [Cr (VI)] were also significant contributors to inhalation cancer risks (> 1 × 10−6) for the adult participants. Finally, we employed a Monte Carlo simulation to evaluate the uncertainty associated with health risk assessment. The mean and median upper-bound lifetime cancer risk associated with inhalation exposure to carcinogenic heavy metal(loid)s exceeded the acceptable level (1 × 10−6) for adults. Traffic emission (including non-tailpipe exhaust), shipping emission, and regional pollution were significant sources of heavy metals. These findings suggest that emission controls targeting local vehicles and vessels should be given priority in Hong Kong.


2021 ◽  
Vol 1 (2) ◽  
pp. 52-57
Author(s):  
JOO HUI TAY ◽  
Nurhameeza Zakaria

A pilot study was conducted to investigate the concentrations of seven heavy metals (Zn, Cu, Cr, Cd, Fe, Ni and Pb) in private car dusts collected from Universiti Malaysia Pahang (UMP), Gambang campus. Ten private cars were selected among UMP staffs and students, and the dust samples were obtained by using a conventional vacuum cleaner with a clean nylon sampling sock pre-inserted into the suction nozzle. All samples were acid-digested with aqua regia solution and analysed for metal concentration using Atomic Absorption Spectrometry (AAS). The highest mean concentrations were recorded for Fe (650± 480 mg/kg), followed by Zn (160 ± 110 mg/kg), Cu (76.2 ± 18.5 mg/kg), Pb (39.2 ± 99.1 mg/kg), Ni (6.39 ± 8.30 mg/kg), Cr (3.42 ± 5.90 mg/kg) and Cd (0.55 ± 1.40 mg/kg).  Hazard quotient (HQ) and hazard index (HI) values lower than 1 indicated no potential non-carcinogenic risks to the adult drivers.  


2021 ◽  
Author(s):  
Mukesh Kumar Mahato ◽  
Abhay Kumar Singh ◽  
Soma Giri

Abstract Metals can be apprehended in the atmospheric environment of copper and iron mining areas of Jharkhand, which falls in one of the most mineralised areas of India with extensive mining and industrial activities. The study was taken up to appraise the metal contamination in the atmospheric dust to evaluate the metal fluxes and associated health risk considering the seasonal variations. Sixty samples were analysed for As, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb and Zn using the inductively coupled plasma mass spectrometer (ICP-MS) and the contamination levels were assessed by various indices. The metal content of dustfall samples exceeded the average shale values for most of the metals. Higher metal concentrations were found in the locations in close vicinity of mining and industrial areas. The principal component analysis suggested both geogenic and anthropogenic sources for metals in the atmospheric dustfall. Human health risk as determined by hazard quotient (HQ) and hazard index (HI) suggested considerable risk to the child populace through the ingestion pathway for both the mining areas, higher being in iron mining areas. The metal flux and the health risk were higher in summers as compared to winters for both the mining areas. Consequently, the results advocate the necessity of periodic monitoring of the freefall dust of the mining areas and development of proper management strategies to reduce the metal pollution.


2021 ◽  
Vol 6 (4) ◽  
pp. 508-518
Author(s):  
Vedaste Munyeshury ◽  
Eutilerio Felizardo Crisino Chaúque ◽  
Noor Jehan Gulamussen ◽  
Jaime Silvestre Mandlate ◽  
Heidi Richards ◽  
...  

Due to the toxicity of trace metals and the propensity of fishes to bioaccumulate metals in their tissues, we investigated the concentrations of arsenic (As), cadmium (Cd), copper (Cu), iron (Fe), lead (Pb), mercury (Hg), and zinc (Zn) in the muscles of tilapia (Oreochromis mossambicus) and catfish (Chrysichthys nigrodidatatus) collected from open markets in Mozambique. Fe and Hg were the most and least bioaccumulated metals in the fishes, respectively. One-way ANOVA showed significant differences between sites for the analytes. Furthermore, we estimated the possible health risks (estimated daily intake (EDI), target hazard quotient (THQ), and maximum allowable consumption rate (CRlim)) associated with fish consumption. The concentrations of As, Cd, and Pb exceeded the recommended maximum permissible limits (MPL) in fish samples, ranging between 5.65 – 12.7, 1.05 – 12.9, and 1.88 – 6.45 mgkg-1, respectively, whereas values lower than MPL viz. 5.25 – 18.9, ND – 0.033, and 30.8 – 52.3 mgkg-1 were observed for Cu, Hg, and Zn, respectively. Similarly, the EDI (mgkg-1day-1) were below the provisional tolerable daily intake (PTDI) with decreasing order: Fe >Zn >Cu >As >Cd >Pb>Hg. However, the THQ (mg kg-1) was slightly > 1 for As and Cd in some samples. Moreover, the CRlim (kg day-1) showed a decreasing order of Hg >Fe >Zn >Pb> Cu >Cd >As. Generally, consumers are susceptible to health hazards associated with As and Cd. Hence, regular toxicological monitoring of the fishes from the study area is imperative.


Biology ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 2
Author(s):  
Chee Kong Yap ◽  
Weiyun Chew ◽  
Khalid Awadh Al-Mutairi ◽  
Rosimah Nulit ◽  
Mohd. Hafiz Ibrahim ◽  
...  

Human activities due to different land uses are being studied widely in many countries. This study aimed to determine the ecological risks and human health risk assessments (HHRA) of Cd, Pb, Ni, Cu, and Zn in the topsoils of six land uses in Peninsular Malaysia. The ranges of the potentially toxic metals (PTMs) in the soils (mg/kg, dry weight) of this study were 0.24–12.43 for Cd (mean: 1.94), 4.66–2363 for Cu (mean: 228), 2576–116,344 for Fe (mean: 32,618), 2.38–75.67 for Ni (mean: 16.04), 7.22–969 for Pb (mean: 115) and 11.03–3820 for Zn (mean: 512). For the ecological risk assessments, the potential ecological risk index (PERI) for single metals indicated that the severity of pollution of the five metals decreased in the following sequence: Cd > Cu > Pb > Zn > Ni. It was found that industry, landfill, rubbish heap, and mining areas were categorized as “very high ecological risk”. For HHRA, the land uses of industry, landfill and rubbish heap were found to have higher hazard quotient (HQ) values for the three pathways (with the order: ingestion > dermal contact > inhalation ingestion) of the five metals for children and adults, when compared to the mining, plantation, and residential areas. The values for both the non-carcinogenic (Cd, Cu, Ni, and Zn), and carcinogenic risks (CR) for inhalation (Cd and Ni) obtained for children and adults in this study showed no serious adverse health impacts on their health. However, of public concern, the hazard index (HI), for Pb of children at the landfill (L-3) and the rubbish heap (RH-3) sites exceeded 1.0, indicating non-carcinogenic risk (NCR) for children. Therefore, these PERI and HHRA results provided fundamental data for PTMs pollution mitigation and environmental management in areas of different land uses in Peninsular Malaysia.


2021 ◽  
Vol 14 (1) ◽  
pp. 130-141
Author(s):  
U. Bawa ◽  
A. Ahmad ◽  
J.N. Ahmad ◽  
A. G. Ezra

Heavy metals bioaccumulation in agricultural crops fumigated with pesticides has growninto a major concern globally. This study assessed heavy metals concentrations (Cd, Pb, Cr, Cu, Zn) in commonly consumed crops and their corresponding soil from agricultural farm lands in Jos Plateau State, Nigeria. The mean concentrations of heavy metals in the studied crops ranged from 0.17-100.75, 0.17-54.33, 0.83-28.75, 0.17-5.50, 0.5-0.5mg/kg for Zn, Pb, Cu, Cr, and Cd respectively. The trend of heavy metals in the crops were in decreasing order of Zn>Pb>Cu>Cr>Cd and their concentrations varied in different parts of the crops. The mean concentration of Cd, Pb, and Cr in the studiedcrops were above the WHO, (2019) permissible limits and therefore a call for concern. The mean concentrations of heavy metals in the soil varied from 0.5-0.5, 2.50-13.83, 3.67-5.75, 11.83-26.33, and 41-89.50 mg/kg for Cd, Pb, Cr, Cu and Zn respectively and were below the UNEP, (2013) permissible limits for agricultural soil. The result showed that Pb had the highest transfer factor (1.91) in (Capsicum annuum) and Zn had theleast. Similarly, the result revealed high Pollution index value for Pb compared to other metals. Hazard quotient and Hazard index of all the crops were less than 1; thus the consumption of these crops is unlikely to pose health risks to the target population. However, the result showed health risk from daily intake of some of the studied crops for Pb ((Brassica oleracea, Lactucasativus, Zea mays, Spinaciaoleracea, and Capsicum annuum). Hence, regular monitoring and screening of pesticides for heavy metals should be employed by government agencies.


Sign in / Sign up

Export Citation Format

Share Document