contaminated area
Recently Published Documents


TOTAL DOCUMENTS

332
(FIVE YEARS 72)

H-INDEX

31
(FIVE YEARS 4)

Author(s):  
Hokuto Nakata ◽  
Akifumi Eguchi ◽  
Shouta M. M. Nakayama ◽  
John Yabe ◽  
Kaampwe Muzandu ◽  
...  

Lead poisoning is often considered a traditional disease; however, the specific mechanism of toxicity remains unclear. The study of Pb-induced alterations in cellular metabolic pathways is important to understand the biological response and disorders associated with environmental exposure to lead. Metabolomics studies have recently been paid considerable attention to understand in detail the biological response to lead exposure and the associated toxicity mechanisms. In the present study, wild rodents collected from an area contaminated with lead (N = 18) and a control area (N = 10) were investigated. This was the first ever experimental metabolomic study of wildlife exposed to lead in the field. While the levels of plasma phenylalanine and isoleucine were significantly higher in a lead-contaminated area versus the control area, hydroxybutyric acid was marginally significantly higher in the contaminated area, suggesting the possibility of enhancement of lipid metabolism. In the interregional least-absolute shrinkage and selection operator (lasso) regression model analysis, phenylalanine and isoleucine were identified as possible biomarkers, which is in agreement with the random forest model. In addition, in the random forest model, glutaric acid, glutamine, and hydroxybutyric acid were selected. In agreement with previous studies, enrichment analysis showed alterations in the urea cycle and ATP-binding cassette transporter pathways. Although regional rodent species bias was observed in this study, and the relatively small sample size should be taken into account, the present results are to some extent consistent with those of previous studies on humans and laboratory animals.


Plants ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 105
Author(s):  
Daniel Arenas-Lago ◽  
Luisa C. Carvalho ◽  
Erika S. Santos ◽  
Maria Manuela Abreu

Mining activities have turned many areas of the Iberian Pyrite Belt (IPB) into extreme environments with high concentrations of metal(loid)s. These harsh conditions can inhibit or reduce the colonization and/or development of most vegetation. However, some species or populations have developed ecophysiological responses to tolerate stress factors and contaminated soils. The main objectives of this study are: (i) to assess the differences in germination, growth, development and physiological behaviour against oxidative stress caused by metal(loid)s in Lavandula pedunculata (Mill.) Cav. from two different origins (a contaminated area in São Domingos mine, SE of Portugal and an uncontaminated area from Serra do Caldeirão, S of Portugal) under controlled conditions; and (ii) to assess whether it is possible to use this species for the rehabilitation of mine areas of the IPB. After germination, seedlings from São Domingos (LC) and Caldeirão (L) were planted in pots with a contaminated soil developed on gossan (CS) and in pots with an uncontaminated soil (US) under controlled conditions. Multielemental concentrations were determined in soils (total and available fractions) and plants (shoots and roots). Germination rate, shoot height, dry biomass and leaf area were determined, and pigments, glutathione, ascorbate and H2O2 contents were measured in plant shoots. Total concentrations of As, Cr, Cu, Pb and Sb in CS, and As in US exceed the intervention and maximum limits for ecosystem protection and human health. The main results showed that L. pedunculata, regardless of the seed origin, activated defence mechanisms against oxidative stress caused by high concentrations of metal(loid)s. Plants grown from seeds of both origins increased the production of AsA to preserve its reduction levels and kept the contents of GSH stable to maintain the cell’s redox state. Plants grown from seeds collected in non-contaminated areas showed a high capacity for adaptation to extreme conditions. This species showed a greater growth capacity when seeds from a contaminated area were sown in uncontaminated soils. Thus, L. pedunculata, mainly grown from seeds from contaminated areas, may be used in phytostabilization programmes in areas with soils with high contents of metal(loid)s.


Toxics ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 353
Author(s):  
Hoa Thi Vu ◽  
Thao Ngoc Pham ◽  
Takashi Yokawa ◽  
Muneko Nishijo ◽  
Tai Pham The ◽  
...  

To clarify the influence of dioxin exposure on brain morphometry, the present study investigated associations between dioxin exposure at high levels and brain structural irregularities in 32 Vietnamese men. Two exposure markers were used: blood dioxin levels, as a marker of exposure in adulthood, and perinatal dioxin exposure, estimated by maternal residency in a dioxin-contaminated area during pregnancy. All subjects underwent brain magnetic resonance imaging (MRI) scans. We analyzed correlations between regional gray matter volumes and blood dioxin levels, and compared regional volumes between men with and without perinatal dioxin exposure using the voxel-based morphometry (VBM) tool from Statistical Parametric Mapping 12 (SPM12). Blood 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) was associated with low volume of the medial temporal pole and fusiform gyrus. Toxic equivalency (TEQ)-PCDDs were correlated with low medial temporal pole volume. However, 1,2,3,4,7,8-HxCDD was associated with high middle frontal gyrus and cerebellum volume. In men with perinatal dioxin exposure, the left inferior frontal gyrus pars orbitalis volume was significantly lower than in those without perinatal exposure. These results suggest that dioxin exposure during the perinatal period and in adulthood may alter regional brain volume, which might lead to cognitive deficits and unusual social emotional behavior in Vietnamese men living in dioxin-contaminated areas.


2021 ◽  
Vol 22 (24) ◽  
pp. 13469
Author(s):  
Marta Roszak ◽  
Joanna Jabłońska ◽  
Xymena Stachurska ◽  
Kamila Dubrowska ◽  
Justyna Kajdanowicz ◽  
...  

The main objectives of this study were to isolate bacteria from soil chronically contaminated with polycyclic aromatic hydrocarbons (PAHs), develop an autochthonous microbial consortium, and evaluate its ability to degrade PAHs in their native contaminated soil. Strains with the best bioremediation potential were selected during the multi-stage isolation process. Moreover, to choose bacteria with the highest bioremediation potential, the presence of PAH-degrading genes (pahE) was confirmed and the following tests were performed: tolerance to heavy metals, antagonistic behavior, phytotoxicity, and antimicrobial susceptibility. In vitro degradation of hydrocarbons led to the reduction of the total PAH content by 93.5% after the first day of incubation and by 99.22% after the eighth day. Bioremediation experiment conducted in situ in the contaminated area resulted in the average reduction of the total PAH concentration by 33.3% after 5 months and by over 72% after 13 months, compared to the concentration recorded before the intervention. Therefore, this study implicates that the development of an autochthonous microbial consortium isolated from long-term PAH-contaminated soil has the potential to enhance the bioremediation process.


Author(s):  
Peter Braun ◽  
Wolfgang Beyer ◽  
Matthias Hanczaruk ◽  
Julia Riehm ◽  
Markus Antwerpen ◽  
...  

The zoonotic disease anthrax caused by the endospore-forming bacterium Bacillus anthracis is very rare in Germany. In the state of Bavaria, the last case occurred in July of 2009 resulting in four dead cows. In August of 2021, the disease reemerged after heavy rains, killing one gestating cow. Notably, both outbreaks affected the same pasture, suggesting a close epidemiological connection. B. anthracis could be grown from blood culture and the presence of both virulence plasmids (pXO1 and pXO2) were confirmed by PCR. Also, recently developed diagnostic tools enabled rapid detection of B. anthracis cells and nucleic acids directly in clinical samples. The complete genome of the strain isolated from blood, designated BF-5, was DNA-sequenced and phylogenetically grouped within the B.Br.CNEVA clade that is typical for European B. anthracis strains. The genome was almost identical to BF-1, the isolate of 2009, separated only by three single nucleotide polymorphisms on the chromosome, one on plasmid pXO2 and three indel-regions. Further, B. anthracis DNA was detected by PCR from soil-samples taken from spots, where the cow had fallen onto the pasture. New tools based on phage receptor binding proteins enabled the microscopic detection and isolation of B. anthracis directly from soil-samples. These environmental isolates were genotyped and found to be SNP-identical to BF-1. Therefore, it seems that the BF-5 genotype is currently the prevalent one at the affected premises. The contaminated area was subsequently disinfected with formaldehyde.


2021 ◽  
Vol 900 (1) ◽  
pp. 012048
Author(s):  
M Vašinková ◽  
M Dlabaja ◽  
K Kučová

Abstract The study compares the ability to bioaccumulate toxic metal ions using microscopic filamentous fungi of the genus Aspergillus isolated from the anthropogenically contaminated site of the Ostramo Lagoons (Ostrava, Czech Republic). The experiment comprised six species of indigenous fungal isolates: A. niger, A. candidus, A. iizukae, A. westerdijkiae, A. ochraceus and A. clavatus. Nutrient liquid media enriched with Cu(II), Zn(II), Ni(II) and Cr(III) were individually inoculated with spores of these fungi. After thirty days of incubation, the content of metal ions in the dried fungal biomass and medium was measured by the AAS. It was found that the average bioaccumulation capacity of selected toxic metal within the tested strains decreases in the following order: A. ochraceus > A. candidus > A. clavatus > A. westerdijkiae > A. iizukae > A. niger. The highest bioaccumulation efficiency was achieved by the A. ochraceus strain which accumulated Cu(II) with an efficiency of 57.42 %, Zn(II) with 56.88 %, Cr(III) with 37.73 %. When comparing the ability of bioaccumulation of the toxic metals, the following was found: Zn(II) > Cu(II) > Cr(III) > Ni(II). Understanding of bioaccumulation processes that take place in fungal cells at the molecular level may lead to better strategies for the application of these interesting microorganisms in bioremediation processes.


Sign in / Sign up

Export Citation Format

Share Document