anthropogenic inputs
Recently Published Documents


TOTAL DOCUMENTS

212
(FIVE YEARS 59)

H-INDEX

29
(FIVE YEARS 5)

Agronomy ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 132
Author(s):  
Federico Martinelli ◽  
Anna-Lena Vollheyde ◽  
Miguel A. Cebrián-Piqueras ◽  
Christina von Haaren ◽  
Elisa Lorenzetti ◽  
...  

Environmental degradation and the decrease of ecosystem service provision are currently of major concern, with current agricultural systems being a major driver. To meet our future environmental and sustainability targets a transformation of the agro-food systems and current agricultural value chain are crucial. One approach to redesign farming systems is the concept of biodiversity-based agriculture (BBA) which relies on sustainable diversification of biological components and their natural interactions in farming systems to maximize fertility, productivity, and resilience to external perturbations. Despite minimizing anthropogenic inputs, BBA is not yet able to meet all beneficial environmental objectives. BBA applied in the Mediterranean basin requires urgent innovation in approaches, methodologies, and models for small-holder traditional farming systems to ensure a stable provision of ecosystem services and better resilience to environmental stresses linked to climate change. Legumes are the backbone of the Mediterranean agro-ecosystems from ancient times, but their unique and wide biodiversity was not sufficiently valorized, especially by North-African countries. Here, we present LEGU-MED, a three-year international project funded by PRIMA initiative 2019. An international consortium was established involving five universities, 5 research institutes, and one private company from 8 countries: Italy, Germany, Spain, Algeria, Tunisia, Turkey, Lebanon, and Croatia. The main objective of this project is to put forward an international and well-integrated plan to valorize the legume agrobiodiversity of the Mediterranean in biodiversity-based farming systems and consequently enhance agro-ecosystem functions and services in the Mediterranean basin. The successful completion of LEGU-MED will have the following impacts on Mediterranean legume-based farming systems: (1) improve water use efficiency, (2) reduce the use of anthropogenic inputs through the maintenance of soil fertility, (3) enhance pollination and improve ecological connectivity with flora and fauna, (4) protect close-by wildland ecosystems, (5) enhance other ecosystem services (e.g., pest, disease, and weed suppression), and (6) provide healthier and safer protein-rich food.


Plants ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 2676
Author(s):  
Getrude Tshithukhe ◽  
Samuel N. Motitsoe ◽  
Martin P. Hill

There is continuous deterioration of freshwater systems globally due to excessive anthropogenic inputs, which severely affect important socio-economic and ecological services. We investigated the water and sediment quality at 10 sites along the severely modified Swartkops River system in the Eastern Cape Province of South Africa and then quantified the phytoremediation potential by native and non-native macrophyte species over a period of 6 months. We hypothesized that the presence of semi and permanent native and non-native macrophytes mats would reduce water and sediment contamination through assimilation downriver. Our results were variable and, thus, inconsistent with our hypotheses; there were no clear trends in water and sediment quality improvement along the Swartkops River. Although variable, the free-floating non-native macrophyte, Pontederia (=Eichhornia) crassipes recorded the highest assimilation potential of heavy metals in water (e.g., Fe and Cu) and sediments (e.g., Fe and Zn), followed by a submerged native macrophyte, Stuckenia pectinatus, and three native emergent species, Typha capensis, Cyperus sexangularis, and Phragmites australis. Pollution indices clearly showed the promising assimilation by native and non-native macrophytes species; however, the Swartkops River was heavily influenced by multiple non-point sources along the system, compromising the assimilation effect. Furthermore, we emphasise that excessive anthropogenic inputs compromise the system’s ability to assimilate heavy metals inputs leading to water quality deterioration.


Water ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 3203
Author(s):  
Sara El Mrissani ◽  
Souad Haida ◽  
Jean-Luc Probst ◽  
Anne Probst

River water quality is particularly of concern in semi-arid countries with limited water resources. Increasing anthropogenic activities can lead to the accumulation of trace metals (TM) in bottom sediments, which is a specific storage compartment. The present study aimed to investigate the geochemistry of trace metals (As, Cd, Co, Cr, Cu, Ni, Pb, Zn) and of some physico-chemical parameters in bottom sediments from the Sebou basin, which represents 1/3 of the surface water resources of Morocco. The order of abundance of the metals was Zn > Cr > Cu > Ni > Pb > Co > As > Cd. A major fingerprint of weathering on metal concentration, and point and non-point anthropogenic sources were highlighted. The origin and intensity of the contamination were determined using a combination of geochemical indicators. The contamination was on the whole moderate, with Cr, Zn, Cu, and Pb as the most enriched metals, especially at the A1, S3, and S4 stations located downstream of Fez city, well known for its intensive industrial and tannery activities. A multi-variate analysis evidenced the strong link between natural elements such as Co with clays and Fe oxides, and As with Ca, whereas Cd, Cu, Cr, Ni, Pb, Zn, partly originating from anthropogenic activities (industrial and domestic waste, agricultural inputs), were linked to phosphorus, oxides, carbonates, and/or POC, indicating their anthropic source and/or control by sediment compounds. Cadmium, Pb, and Cu were the most available metals. Finally, in addition to Cd, Pb and Zn were identified as hazardous metals in sediments as evidenced by the positive relationship between the proportion of the labile fraction and the enrichment factor revealing anthropogenic inputs.


2021 ◽  
Vol 9 ◽  
Author(s):  
Tom Jilbert ◽  
Greg Cowie ◽  
Luukas Lintumäki ◽  
Sami Jokinen ◽  
Eero Asmala ◽  
...  

Coastal regions globally have experienced widespread anthropogenic eutrophication in recent decades. Loading of autochthonous carbon to coastal sediments enhances the demand for electron acceptors for microbial remineralization, often leading to rearrangement of the sediment diagenetic zonation and potentially enhancing fluxes of methane and hydrogen sulfide from the seafloor. However, the role of anthropogenic inputs of terrestrial organic matter (OMterr.) in modulating diagenesis in coastal sediments is often overlooked, despite being of potential importance in regions of land-use and industrial change. Here we present a dated 4-m sediment and porewater geochemistry record from a eutrophic coastal location in the northern Baltic Sea, to investigate sources of recent carbon loading and their impact on modern diagenetic processes. Based on an end-member mixing model of sediment N/C ratios, we observe that a significant fraction of the late-20th century carbon loading at this location was contributed by OMterr.. Furthermore, analysis of lignin in this material shows depleted ratios of syringyl/vanillyl (S/V) and cinnamyl/vanillyl (C/V) phenols, indicative of enhanced inputs of woody gymnosperm tissue likely from forest industries. The rapid loading of organic matter from combined terrestrial and autochthonous sources during the late 20th century has stimulated methanogenesis in the sediment column, and shoaled the sulfate-methane transition zone (SMTZ) to a depth of 5–20 cm. Optical parameters of colored dissolved organic matter confirm that OMterr. is actively degrading in the methanogenic layer, implying a role for this material in diagenetic processes. Porewater CH4, SO42− δ13C-DIC, and ∑S2− data suggest that the modern SMTZ is a broad zone in which organoclastic sulfate reduction, methanogenesis and anaerobic oxidation of methane (AOM) co-occur. However, fluxes of CH4 and SO42− show that rates of these processes are similar to other marine locations with a comparably shallow SMTZ. We suggest that the shallow depth of the modern SMTZ is the principal reason for high observed diffusive and ebullitive methane fluxes from sediments in this area. Our results highlight that anthropogenic activities lead to multiple pathways of carbon loading to coastal sediments, and that forest industry impacts on sedimentation in the northern Baltic Sea may be more widespread than previously acknowledged.


Biology ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1093
Author(s):  
Pavel Nekhoroshkov ◽  
Inga Zinicovscaia ◽  
Dmitry Nikolayev ◽  
Tatiana Lychagina ◽  
Alexey Pakhnevich ◽  
...  

A both wild and farmed mussels in natural conditions, anthropogenic inputs are usually reflected in the increase of the content of specific elements. To determine the possible effect of the elemental patterns of farmed and wild mussels (Mytilus galloprovincialis) collected in the Saldanha Bay area (South Africa) on the crystallographic texture of the shells, the content of 20 elements in shells and 24 in the soft tissue of mussels was determined by neutron activation analysis. The crystallographic texture of mussel shells was analyzed using time-of-flight neutron diffraction. The wild mussels from open ocean site live in stressful natural conditions and contain higher amounts of the majority of determined elements in comparison with mussels farmed in closed water areas with anthropogenic loadings. The changes between the maximums of the same pole figures of the three samples are in the range of variability identified for the genus Mytilus. The content of Cl, Sr, and I was the highest in mussels from the open ocean site, which is reflected by the lowest mass/length ratio. The determined crystallographic textures of mussels are relatively stable as shown in the analyzed pole figures despite the concentrations of Na, Mg, Cl, Br, Sr, and I in shells, which significantly differ for wild and farmed mussels. The stability of the crystallographic texture that we observed suggests that it can be used as a reference model, where if a very different texture is determined, increased attention to the ecological situation should be paid.


AMBIO ◽  
2021 ◽  
Author(s):  
Pearse James Buchanan ◽  
Alessandro Tagliabue ◽  
Camille de la Vega ◽  
Claire Mahaffey

AbstractNitrogen stable isotopes (δ15N) are used to study food web and foraging dynamics due to the step-wise enrichment of tissues with increasing trophic level, but they rely on the isoscape baseline that varies markedly in the Arctic due to the interplay between Atlantic- and Pacific-origin waters. Using a hierarchy of simulations with a state-of-the-art ocean-biogeochemical model, we demonstrate that the canonical isotopic gradient of 2–3‰ between the Pacific and Atlantic sectors of the Arctic Ocean has grown to 3–4‰ and will continue to expand under a high emissions climate change scenario by the end of the twenty-first century. δ15N increases in the Pacific-influenced high Arctic due to increased primary production, while Atlantic sector decreases result from the integrated effects of Atlantic inflow and anthropogenic inputs. While these trends will complicate longitudinal food web studies using δ15N, they may aid those focussed on movement as the Arctic isoscape becomes more regionally distinct.


Author(s):  
Sarra Mohammed Attia ◽  
Kavitha Varadharajan ◽  
Muralitharan Shanmugakonar ◽  
Sandra Concepcion Das ◽  
Hamda A. Al-Naemi

AbstractCadmium (Cd) is a toxic heavy metal that is widespread in the environment due to the substantial anthropogenic inputs from the agriculture and industrial sectors. The toxic impact of Cd adversely affects human health and is linked with endocrine disruption, carcinogenicity, diabetes-related diseases, and metabolic disorder. One of the main characterizations of Cd is bioaccumulation where its half-life reaches 40 years with an unknown biological role. Several organs were found to be targets for Cd accumulation such as the liver, kidneys, and adipose tissue. Adipose tissue (AT) is a dynamic organ that plays a significant role in the body’s homeostasis through the maintenance of energy storage. Another vital function for AT is the secretion of adipokines which provides a metabolic cross-talk with the whole body’s organs. Cd is found to adversely impact the function of AT. This includes the disruption of adipogenesis, lipogenesis, and lipolysis. As a consequence, dysfunctional AT has disruptive patterns of adipokines secretions. The main adipokines produced from AT are leptin and adiponectin. Both were found to be significantly declined under the Cd exposure. Additionally, adipose tissue macrophages can produce either anti-inflammatory markers or pro-inflammatory markers depending on the local AT condition. Cadmium exposure was reported to upregulate pro-inflammatory markers and downregulate anti-inflammatory markers. However, the exact mechanisms of Cd’s adverse role on AT structure, function, and secretion patterns of adipokines are not totally clarified. Therefore, in this review, we present the current findings related to Cd detrimental effects on adipose tissues.


2021 ◽  
Vol 47 (3) ◽  
pp. 1073-1085
Author(s):  
Frank Masele

The paper presents detailed zooarchaeological and taphonomic results on the Later Stone Age (LSA) faunal assemblage. The contributions of various taphonomic agents in the formation of the assemblage are accentuated. The assemblage is well-preserved and the majority of specimens are not highly weathered. Fluvial disturbance did not play a significant role and can be ruled out as a significant taphonomic agent in the formation. Results indicate that LSA humans exploited high-quality nutritional resources mainly of the large-sized animals and aquatic resources as extra sources of meat and fat. The assemblage preserves stone tools butchery marks (cut marks and percussion marks) and carnivore marks (tooth marks) albeit few. Overall, the faunal assemblage exhibits high anthropogenic inputs and marginal carnivore involvement. Keywords:    Zooarchaeology; Taphonomy; Later Stone Age; Serengeti National Park; Loiyangalani; Tanzania


Sign in / Sign up

Export Citation Format

Share Document