New approach for interpretation of scattered ground magnetic data in a part of Delhi Fold Belt-NW Indian shield

2013 ◽  
Vol 7 (7) ◽  
pp. 2633-2639 ◽  
Author(s):  
Prabhakara Prasad P. ◽  
Satish Kumar K. ◽  
Seshunarayana T. ◽  
Rama Rao Ch.
2021 ◽  
Author(s):  
Creszyl Joy J. Arellano ◽  
Leo T. Armada ◽  
Carla B. Dimalanta ◽  
Karlo L. Queaño ◽  
Eric S. Andal ◽  
...  

1976 ◽  
Vol 114 (4) ◽  
pp. 663-683 ◽  
Author(s):  
M. K. Seguin ◽  
H. H. Arsenault

Sensors ◽  
2021 ◽  
Vol 21 (17) ◽  
pp. 5736
Author(s):  
Filippo Accomando ◽  
Andrea Vitale ◽  
Antonello Bonfante ◽  
Maurizio Buonanno ◽  
Giovanni Florio

The compensation of magnetic and electromagnetic interference generated by drones is one of the main problems related to drone-borne magnetometry. The simplest solution is to suspend the magnetometer at a certain distance from the drone. However, this choice may compromise the flight stability or introduce periodic data variations generated by the oscillations of the magnetometer. We studied this problem by conducting two drone-borne magnetic surveys using a prototype system based on a cesium-vapor magnetometer with a 1000 Hz sampling frequency. First, the magnetometer was fixed to the drone landing-sled (at 0.5 m from the rotors), and then it was suspended 3 m below the drone. These two configurations illustrate endmembers of the possible solutions, favoring the stability of the system during flight or the minimization of the mobile platform noise. Drone-generated noise was filtered according to a CWT analysis, and both the spectral characteristics and the modelled source parameters resulted analogously to that of a ground magnetic dataset in the same area, which were here taken as a control dataset. This study demonstrates that careful processing can return high quality drone-borne data using both flight configurations. The optimal flight solution can be chosen depending on the survey target and flight conditions.


2007 ◽  
Vol 25 (3) ◽  
pp. 721-736 ◽  
Author(s):  
L. Juusola ◽  
O. Amm ◽  
K. Kauristie ◽  
A. Viljanen

Abstract. The goal of this study is to find a way to statistically estimate the Hall to Pedersen conductance ratio α from ground magnetic data. We use vector magnetic data from the CHAMP satellite to derive this relation. α is attained from magnetic satellite data using the 1-D Spherical Elementary Current Systems (SECS). The ionospheric equivalent current density can either be computed from ground or satellite magnetic data. Under the required 1-D assumption, these two approaches are shown to be equal, which leads to the advantage that the statistics are not restricted to areas covered by ground data. Unlike other methods, using magnetic satellite measurements to determine α ensures reliable data over long time sequences. The statistical study, comprising over 6000 passes between 55° and 76.5° northern geomagnetic latitude during 2001 and 2002, is carried out employing data from the CHAMP satellite. The data are binned according to activity and season. In agreement with earlier studies, values between 1 and 3 are typically found for α. Good compatibility is found, when α attained from CHAMP data is compared with EISCAT radar measurements. The results make it possible to estimate α from the east-west equivalent current density Jφ; [A/km]: α=2.07/(36.54/|Jφ|+1) for Jφ<0 (westward) and α=1.73/(14.79/|Jφ+1) for Jφ0 (eastward). Using the same data, statistics of ionospheric and field-aligned current densities as a function of geomagnetic latitude and MLT are included. These are binned with respect to activity, season and IMF BZ and BY. For the first time, all three current density components are simultaneously studied this way on a comparable spatial scale. With increasing activity, the enhancement and the equatorward expansion of the electrojets and the R1 and R2 currents is observed, and in the nightside, possible indications of a Cowling channel appear. During southward IMF BZ, the electrojets and the R1 and R2 currents are stronger and clearer than during northward BZ. IMF BY affects the orientation of the pattern.


1999 ◽  
Vol 39 (1) ◽  
pp. 494
Author(s):  
I. Kivior ◽  
D. Boyd

Aeromagnetic surveys have been generally regarded in petroleum exploration as a reconnaissance tool for major structures. They were used commonly in the early stages of exploration to delineate the shape and depth of the sedimentary basin by detecting the strong magnetic contrast between the sediments and the underlying metamorphic basement. Recent developments in the application of computer technology to the study of the earth's magnetic field have significantly extended the scope of aeromagnetic surveys as a tool in the exploration for hydrocarbons. In this paper the two principal methods used in the analysis and interpretation of aeromagnetic data over sedimentary basins are: 1) energy spectral analysis applied to gridded data; and, 2) automatic curve matching applied to profile data. It is important to establish the magnetic character of sedimentary and basement rocks, and to determine the regional magnetic character of the area by applying energy spectral analysis. Application of automatic curve matching to profile data can provide results from the sedimentary section and deeper parts of a basin. High quality magnetic data from an experimental aeromagnetic survey flown over part of the Eromanga/Cooper Basin has recently been interpreted using this new approach. From this survey it is possible to detect major structures such as highs and troughs in the weakly magnetic basement, as well as pick out faults, and magnetic layers in the sedimentary section. The results are consistent with interpretation from seismic and demonstrate that aeromagnetic data can be used to assist seismic interpretation, for example to interpolate between widely spaced seismic lines and sometimes to locate structures which can not be detected from seismic surveys. This new approach to the interpretation of aeromagnetic data can provide a complementary tool for hydrocarbon exploration, which is ideal for logistically difficult terrain and environmentally sensitive areas.


Sign in / Sign up

Export Citation Format

Share Document