Bed topography variations in bend by simultaneous installation of submerged vanes and single bridge pier

2019 ◽  
Vol 12 (6) ◽  
Author(s):  
Elham Zarei ◽  
Mohammad Vaghefi ◽  
Seyyed Shaker Hashemi
2018 ◽  
Vol 40 ◽  
pp. 03016
Author(s):  
Aslı Bor Türkben

Sediment is transported along the river flow and deposited in the mouth of the intake structure over time and reducing the water intake capacity. Nowadays, many water intake structures lose their function and are closed to operation. To deal with this problem, recently, submerged vane application has offered a practical and economical solution. The aim of this study was to evaluate the efficiency of three vane installations under sediment feeding conditions by comparing the bed topography before and after vanes were installed. For that purpose, experiments were carried out in a laboratory channel running for 90-degree intake angle. Three vanes were installed in one column at near the intake entrance. The vanes dimensions were equal to; 3cm height, 12cm long, 10 mm thick, and aligned with α = 20° angle to flow direction. The tests were run until equilibrium was reached, i.e. when the outgoing solid discharge was equal or larger than 90% of the incoming. Once the bed topography remained stable, bed and water level surfaces were measured. tests were carried out by feeding sediment from upstream of the main channel.


2015 ◽  
Vol 5 (1) ◽  
pp. 9-15
Author(s):  
Shiv Kumar Yadav ◽  
◽  
Shri Ram ◽  

2012 ◽  
Vol 11 (5) ◽  
pp. 975-989 ◽  
Author(s):  
Luigia Brandimarte ◽  
Paolo Paron ◽  
Giuliano Di Baldassarre

1989 ◽  
Vol 35 (120) ◽  
pp. 201-208 ◽  
Author(s):  
Peter Jansson ◽  
Roger LeB. Hooke

AbstractTiltmeters that can detect changes in slope of a glacier surface as small as 0.1 μ rad have been used on Storglaciären. The records obtained to date have been from the upper part of the ablation area, where the bed of the glacier is overdeepened. A total of 82 d of records has been obtained for various time periods between early June and early September.There is generally a gradual change in inclination of the glacier surface over periods of several days, but these changes do not appear to be systematic. In particular, they are not consistent with vertical movements of stakes located 2–3 ice thicknesses away from the tiltmeters. This suggests that the tiltmeters are sensing disturbances over areas with diameters comparable to the local ice thickness.Superimposed on these trends are diurnal signals suggesting rises and falls of the surface just up-glacier from the riegel that bounds the overdeepening on its down-glacier end. These may be due to waves of high water pressure originating in a crevassed area near the equilibrium line. If this interpretation is correct, the waves apparently move down-glacier at speeds of 20–60 m h−1and become sufficiently focused, either by the bed topography or by conduit constrictions, to result in local uplift of the surface. Also observed are abrupt tilts towards the glacier center line shortly after the beginning of heavy rainstorms. These appear to be due to longitudinal stretching as the part of the glacier below the riegel accelerates faster than that above. Water entering the glacier by way of a series of crevasses over the riegel is believed to be responsible for this differential acceleration. In June 1987, a dramatic event was registered, probably reflecting the initial summer acceleration of the glacier.


2021 ◽  
pp. 1-19
Author(s):  
Melchior Grab ◽  
Enrico Mattea ◽  
Andreas Bauder ◽  
Matthias Huss ◽  
Lasse Rabenstein ◽  
...  

Abstract Accurate knowledge of the ice thickness distribution and glacier bed topography is essential for predicting dynamic glacier changes and the future developments of downstream hydrology, which are impacting the energy sector, tourism industry and natural hazard management. Using AIR-ETH, a new helicopter-borne ground-penetrating radar (GPR) platform, we measured the ice thickness of all large and most medium-sized glaciers in the Swiss Alps during the years 2016–20. Most of these had either never or only partially been surveyed before. With this new dataset, 251 glaciers – making up 81% of the glacierized area – are now covered by GPR surveys. For obtaining a comprehensive estimate of the overall glacier ice volume, ice thickness distribution and glacier bed topography, we combined this large amount of data with two independent modeling algorithms. This resulted in new maps of the glacier bed topography with unprecedented accuracy. The total glacier volume in the Swiss Alps was determined to be 58.7 ± 2.5 km3 in the year 2016. By projecting these results based on mass-balance data, we estimated a total ice volume of 52.9 ± 2.7 km3 for the year 2020. Data and modeling results are accessible in the form of the SwissGlacierThickness-R2020 data package.


Sign in / Sign up

Export Citation Format

Share Document