submerged vane
Recently Published Documents


TOTAL DOCUMENTS

19
(FIVE YEARS 7)

H-INDEX

5
(FIVE YEARS 1)

2022 ◽  
Vol 961 (1) ◽  
pp. 012096
Author(s):  
Rana A. Al-Zubaidy ◽  
Rawaa H. Ismaeil

Abstract Environmental and civil engineering projects frequently employ the open channel side intake structure. However, the commonest among the issues faced in most of the lateral intakes include sedimentation and sediment delivery. This involves several problems namely, decreased flow discharge capacity in the irrigation canals and the threat of water blockage during times of low water flow. Besides, this problem with the sediment either lowers the performance levels or causes failure of the facilities that this sub-channel serves. Hence, the engineers focused on designing an intake with the features of high flow discharge and low sediment delivery. This paper attempts to review and summarize the literature relevant to the branching channel flow and submerged vane technique to minimize the sediment-related issues. The present review highlights that most of the earlier research work done dealt with the characteristics of the flow in a right-angle branch channel possessing rigid confines. Also, more investigations are required regarding the implications of the submerged vanes. Besides, no comprehensive studies are available on the saddle point itself, and a high percentage of the studies have been part of earlier investigations that had focused on only briefly outlining this subject.


Water ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 828
Author(s):  
Joana Baltazar ◽  
Elsa Alves ◽  
Gökçen Bombar ◽  
António Heleno Cardoso

This laboratory study focused on the effect of a submerged vane-field on the flow pattern and bed morphology near and inside the entrance reach of a movable bed 90° lateral diversion. The system was modelled under live bed conditions for a water discharge ratio of ≈0.2. Two experiments were run until bed equilibrium was reached: with and without a vane-field installed close to the diversion entrance to control the transfer of sediments into the diversion channel. The equilibrium bed morphology and the associated 3D flow field were measured in great detail. The bed load diverted into the diversion was reduced by approximately one quarter due to the action of the vane-field. The vanes prevented the formation of the diversion vortex in the main channel, upstream of the diversion’s entrance, thus contributing to that decrease. They also created a main channel vortex that started at the most upstream vanes and further decreased the amount of bed load entering the diversion. The flow separation zone inside the diversion was larger with vanes, but conveyance was balanced through a slightly deeper scour trench therein. The flow structures described were confirmed through the measurements of the turbulent kinetic energy.


2020 ◽  
Vol 20 (6) ◽  
pp. 2175-2184
Author(s):  
Mohamad Azizipour ◽  
Farshid Amirsalari Meymani ◽  
Mohammad Mahmoodian Shooshtari

Abstract One of the most effective approaches for bank control erosion is using bank-attached vanes. In spite of the superiority of the bank-attached vanes to spur dikes, the vanes' tips are still vulnerable to local scour caused by flow–structure interaction. In this study, slotted bank-attached vanes are proposed to reduce local scour at the tip of the triangular submerged vane. For this, a rectangular slot is created parallel to the chord of the vane with an area of ten percent of the effective area of the vane surface. Two types of conventional vanes and slotted vanes were installed at different angles of attack of 23, 30, 40 and 60 degrees in an arch flume. Experiments were carried out in clear water conditions with different flow regimes with Froude numbers of Fr = 0.287, 0.304 and 0.322. The results show that the slotted vane outperforms the conventional vane by reducing maximum scour depth by about 70, 20, 17 and 54 percent for different angles of attack of 23, 30, 40 and 60 degrees, respectively. The proposed slotted vane also resulted in reduction of scour hole volume around the vane and formed the scour hole away from the outer bank.


Author(s):  
Ronald William Lake ◽  
Saeed Shaeri ◽  
STMLD Senevirathna
Keyword(s):  

Water ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 984
Author(s):  
Carlos Rodríguez-Amaya ◽  
Argelino Durán-Ariza ◽  
Santiago Duarte-Méndez

An innovative research-based technology has been applied for the first time in Colombia to improve the navigability of the Magdalena river in a zone of the city of Barrancabermeja, Department of Santander. The result of installation of the submerged vane technology demonstrated its effectiveness in sediment management and motivated its further use as a solution to problems of erosion, scour and meander evolution, which are common occurrence in the rivers of the country. Since this 1991 installation, more than 18 projects have been completed and the technical effectiveness of the system has been improved. Compared to traditional solutions, the results demonstrate beneficial economic impacts due to shorter execution times, reduction in annual maintenance costs, and diminished environmental impacts. Characteristics of design and construction and results obtained from five projects are described that are representative of the diversity of conditions and difficulties for the application of this technology in Colombia. Lessons learned for adaptation by river management authorities are derived from the study.


2018 ◽  
Vol 40 ◽  
pp. 03016
Author(s):  
Aslı Bor Türkben

Sediment is transported along the river flow and deposited in the mouth of the intake structure over time and reducing the water intake capacity. Nowadays, many water intake structures lose their function and are closed to operation. To deal with this problem, recently, submerged vane application has offered a practical and economical solution. The aim of this study was to evaluate the efficiency of three vane installations under sediment feeding conditions by comparing the bed topography before and after vanes were installed. For that purpose, experiments were carried out in a laboratory channel running for 90-degree intake angle. Three vanes were installed in one column at near the intake entrance. The vanes dimensions were equal to; 3cm height, 12cm long, 10 mm thick, and aligned with α = 20° angle to flow direction. The tests were run until equilibrium was reached, i.e. when the outgoing solid discharge was equal or larger than 90% of the incoming. Once the bed topography remained stable, bed and water level surfaces were measured. tests were carried out by feeding sediment from upstream of the main channel.


2017 ◽  
Vol 10 (3) ◽  
pp. 246-255 ◽  
Author(s):  
Hojat Karami ◽  
Saeed Farzin ◽  
Mohammad Tavakol Sadrabadi ◽  
Hasan Moazeni
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document