bridge pier scour
Recently Published Documents


TOTAL DOCUMENTS

108
(FIVE YEARS 19)

H-INDEX

17
(FIVE YEARS 1)

2022 ◽  
Vol 148 (3) ◽  
Author(s):  
Christopher Valela ◽  
Colin N. Whittaker ◽  
Colin D. Rennie ◽  
Ioan Nistor ◽  
Bruce W. Melville

2021 ◽  
Vol 3 (2) ◽  
Author(s):  
Mohammad Athar ◽  
M.K. Sabiree ◽  
H. Athar

Lots of work regarding the scour around bridge piers in straight channelhave been done in the past by many researchers. Many factors which affectscour around piers such as shape of piers, size, positioning and orientationetc. have been studied in detail by them. However, similar studies inmeandering channels are scanty. Very few researchers have studied theeffect of angular displacement which has considerable effects of scouraround bridge piers.In this paper an attempt has been made to carry out a detailed study ofangular displacement on scour. A constant diameter bridge pier of circularshape has been tested in a meandering channel bend with bend angle as 800 .The test bed was prepared by using uniform sand having d50 as 0.27 mmand run was taken for a discharge of 2.5 l/s.


2021 ◽  
pp. 147592172110537
Author(s):  
Esmaeil Ghorbani ◽  
Dagmar Svecova ◽  
Douglas J Thomson ◽  
Young-Jin Cha

Soil scour near a bridge pier foundation is one of the leading causes of bridge failures. Traditional vibration-based scour monitoring methods are nearly incapable of quantifying scour levels using a single acceleration response without knowledge of excitation information. In this paper, a new output-only scour level prediction method is introduced via the integration of an unscented Kalman filter (UKF), random decrement (RD), and newly derived continuous Euler–Bernoulli beam addressing river water, traffic loads, and the linear and nonlinear behavior of sediments around the pier as external effects. We conducted extensive simulation studies and applied the method to an existing medium-span bridge with a steel girder and concrete deck in service in the province of Manitoba, Canada. These studies show that our proposed method can accurately estimate scour levels using only one accelerometer, which was validated with an independent bathymetric survey of the soil level at the pier foundation. Furthermore, three different linear and nonlinear soil profiles representing the soil behavior around the pier were also investigated as case studies in the scour level estimation process. The results confirm that a cubic function exhibits the best performance in quantifying the scour level around bridge piers.


Author(s):  
Hossein Hamidifar ◽  
Seyed Mohammad Bagher Shahabi-Haghighi ◽  
Yee Meng Chiew

Water ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 536
Author(s):  
Christopher Valela ◽  
Dario A. B. Sirianni ◽  
Ioan Nistor ◽  
Colin D. Rennie ◽  
Husham Almansour

Bridge pier scour is a complex process, which is influenced by many parameters, including the presence of ice cover around piers. To better understand the influence of ice on bridge pier scour, an artificial ice cover, equipped with either a smooth or a rough surface, was constructed and tested experimentally. The ice cover was positioned on the surface of the water and submerged to specified depths in order to replicate floating and fixed (pressurized) ice cover conditions, respectively. During each test, a velocity profile was collected beneath the ice cover, and after each test, a three-dimensional scan of the bed was collected to compare the resulting scour. It was discovered that the presence of an ice cover around a bridge pier increased pier scour under all conditions. Furthermore, as the ice cover was submerged deeper into the flow, the flow velocity increased, and greater scour resulted. For each level of submergence, the rough ice cover yielded increased scour depths compared to the smooth ice cover.


Modelling ◽  
2021 ◽  
Vol 2 (1) ◽  
pp. 63-77
Author(s):  
Jafar Jafari-Asl ◽  
Mohamed El Amine Ben Seghier ◽  
Sima Ohadi ◽  
You Dong ◽  
Vagelis Plevris

In this work, the performance of reliability methods for the probabilistic analysis of local scour at a bridge pier is investigated. The reliability of bridge pier scour is one of the important issues for the risk assessment and safety evaluation of bridges. Typically, the depth prediction of bridge pier scour is estimated using deterministic equations, which do not consider the uncertainties related to scour parameters. To consider these uncertainties, a reliability analysis of bridge pier scour is required. In the recent years, a number of efficient reliability methods have been proposed for the reliability-based assessment of engineering problems based on simulation, such as Monte Carlo simulation (MCS), subset simulation (SS), importance sampling (IS), directional simulation (DS), and line sampling (LS). However, no general guideline recommending the most appropriate reliability method for the safety assessment of bridge pier scour has yet been proposed. For this purpose, we carried out a comparative study of the five efficient reliability methods so as to originate general guidelines for the probabilistic assessment of bridge pier scour. In addition, a sensitivity analysis was also carried out to find the effect of individual random variables on the reliability of bridge pier scour.


Eng ◽  
2020 ◽  
Vol 1 (2) ◽  
pp. 188-210
Author(s):  
Tom Craswell ◽  
Shatirah Akib

Scour is caused by the erosive action of flowing water, which causes materials from the bed and the banks of a river to be moved or unsettled. Hydraulic structures can be drastically impacted as a result of scour, which is why it is one of the most common causes of bridge failure around the world. With a predicted increase in climate conditions, the subsequent failure of hydraulic structures due to scour is likely to proliferate as the flooding of waterways is projected to rise. This study aims to determine the viability of introducing alternative materials to a scour countermeasure used in construction—gabion models—in a bid to improve the sustainability of a project whilst providing suitable scour mitigation measures. Existing literature was examined to comprehend the different scour countermeasures used, as well as the use of alternative materials that can be used as a scour countermeasure. A laboratory experiment was then carried out using a bridge pier embedded in a flume channel protected by gabion mattresses filled with alternative materials—stone, clothing and plastic—to analyse their effectiveness. The results demonstrate that stone filled gabions are most effective at reducing bridge pier scour. However, recycled clothing as a gabion fill could prove to be a viable alternative in construction projects, potentially leading to reduced construction costs and greater sustainability. However, more research on a greater scale is required to test this thesis.


Sign in / Sign up

Export Citation Format

Share Document