Application of a root water uptake model and numerical simulation to walnut trees in arid areas of northwest China

2021 ◽  
Vol 14 (7) ◽  
Author(s):  
Milixiati Minaduola ◽  
Hudan Tumarbay ◽  
Ping Jiao
Atmosphere ◽  
2019 ◽  
Vol 10 (4) ◽  
pp. 195
Author(s):  
Ma ◽  
Tan ◽  
Ding ◽  
Chen ◽  
Yang

The spatial distribution and long-time variation of the deep-developed boundary layer are not well understood in arid and semi-arid regions of northwest China. ERA-Interim (ECMWF Reanalysis data, ECMWF: European Centre for Medium-Range Weather Forecasts) were used to study the deep-developed boundary layer in the five representative areas in summer and then the Weather Research Forecast (WRF) model was applied to simulate and verify its applicability. The results show that the boundary layer heights in the five representative areas are higher in late spring and summer (the highest is 2485~3502 m in June) and lower in autumn, winter and early spring (the lowest is 758~907 m in December). The seasonal variations of the boundary layer height are smaller at 02:00 BJT and 08:00 BJT, while the variations are relatively larger at 14:00 BJT and 20:00 BJT. The atmospheric boundary layer, with heights over 4000 m, generally exists in late spring and summer. The boundary layer heights are higher in the arid region than in the semi-arid region and the deep-developed boundary layer lasts longer in the arid region. The boundary layer heights present reductions from the northwest to the southeast, except for Minqin in the middle north. The numerical simulation results show that there is a significant difference between different combinations of parameterization schemes to simulate the deep-developed boundary layer in these areas. The combination Goddard+SLAB+ACM2 performs better in the extreme arid area, Dunhuang, and the arid areas, Jiuquan and Minqin, whereas the simulation effect of the combination Dudhia+Noah+ACM2 is better in the semi-arid areas, Yuzhong and Lanzhou. The difference between the schemes is related to the determination of the boundary layer height.


2020 ◽  
Vol 112 (1) ◽  
pp. 158-174 ◽  
Author(s):  
Xiaowen Wang ◽  
Huanjie Cai ◽  
Zhen Zheng ◽  
Lianyu Yu ◽  
Zishen Wang ◽  
...  

2009 ◽  
Vol 00 (00) ◽  
pp. 090904073309027-8
Author(s):  
H.W. Wang ◽  
S. Kyriacos ◽  
L. Cartilier

2013 ◽  
Vol 1 (No. 3) ◽  
pp. 85-98
Author(s):  
Dohnal Michal ◽  
Dušek Jaromír ◽  
Vogel Tomáš ◽  
Herza Jiří

This paper focuses on numerical modelling of soil water movement in response to the root water uptake that is driven by transpiration. The flow of water in a lysimeter, installed at a grass covered hillslope site in a small headwater catchment, is analysed by means of numerical simulation. The lysimeter system provides a well defined control volume with boundary fluxes measured and soil water pressure continuously monitored. The evapotranspiration intensity is estimated by the Penman-Monteith method and compared with the measured lysimeter soil water loss and the simulated root water uptake. Variably saturated flow of water in the lysimeter is simulated using one-dimensional dual-permeability model based on the numerical solution of the Richards’ equation. The availability of water for the root water uptake is determined by the evaluation of the plant water stress function, integrated in the soil water flow model. Different lower boundary conditions are tested to compare the soil water dynamics inside and outside the lysimeter. Special attention is paid to the possible influence of the preferential flow effects on the lysimeter soil water balance. The adopted modelling approach provides a useful and flexible framework for numerical analysis of soil water dynamics in response to the plant transpiration.


Water ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 425 ◽  
Author(s):  
Fairouz Slama ◽  
Nessrine Zemni ◽  
Fethi Bouksila ◽  
Roberto De Mascellis ◽  
Rachida Bouhlila

Water scarcity and quality degradation represent real threats to economic, social, and environmental development of arid and semi-arid regions. Drip irrigation associated to Deficit Irrigation (DI) has been investigated as a water saving technique. Yet its environmental impacts on soil and groundwater need to be gone into in depth especially when using brackish irrigation water. Soil water content and salinity were monitored in a fully drip irrigated potato plot with brackish water (4.45 dSm−1) in semi-arid Tunisia. The HYDRUS-1D model was used to investigate the effects of different irrigation regimes (deficit irrigation (T1R, 70% ETc), full irrigation (T2R, 100% ETc), and farmer’s schedule (T3R, 237% ETc) on root water uptake, root zone salinity, and solute return flows to groundwater. The simulated values of soil water content (θ) and electrical conductivity of soil solution (ECsw) were in good agreement with the observation values, as indicated by mean RMSE values (≤0.008 m3·m−3, and ≤0.28 dSm−1 for soil water content and ECsw respectively). The results of the different simulation treatments showed that relative yield accounted for 54%, 70%, and 85.5% of the potential maximal value when both water and solute stress were considered for deficit, full. and farmer’s irrigation, respectively. Root zone salinity was the lowest and root water uptake was the same with and without solute stress for the treatment corresponding to the farmer’s irrigation schedule (273% ETc). Solute return flows reaching the groundwater were the highest for T3R after two subsequent rainfall seasons. Beyond the water efficiency of DI with brackish water, long term studies need to focus on its impact on soil and groundwater salinization risks under changing climate conditions.


2010 ◽  
Vol 97 (9) ◽  
pp. 1382-1388 ◽  
Author(s):  
Derblai Casaroli ◽  
Quirijn de Jong van Lier ◽  
Durval Dourado Neto

Sign in / Sign up

Export Citation Format

Share Document