Investigation of the effects of approaches used in the production of training and validation data sets on the accuracy of landslide susceptibility mapping models: Samsun (Turkey) example

2021 ◽  
Vol 14 (20) ◽  
Author(s):  
Cem Kilicoglu
2021 ◽  
Vol 9 ◽  
Author(s):  
Shibao Wang ◽  
Jianqi Zhuang ◽  
Jia Zheng ◽  
Hongyu Fan ◽  
Jiaxu Kong ◽  
...  

Landslides are widely distributed worldwide and often result in tremendous casualties and economic losses, especially in the Loess Plateau of China. Taking Wuqi County in the hinterland of the Loess Plateau as the research area, using Bayesian hyperparameters to optimize random forest and extreme gradient boosting decision trees model for landslide susceptibility mapping, and the two optimized models are compared. In addition, 14 landslide influencing factors are selected, and 734 landslides are obtained according to field investigation and reports from literals. The landslides were randomly divided into training data (70%) and validation data (30%). The hyperparameters of the random forest and extreme gradient boosting decision tree models were optimized using a Bayesian algorithm, and then the optimal hyperparameters are selected for landslide susceptibility mapping. Both models were evaluated and compared using the receiver operating characteristic curve and confusion matrix. The results show that the AUC validation data of the Bayesian optimized random forest and extreme gradient boosting decision tree model are 0.88 and 0.86, respectively, which showed an improvement of 4 and 3%, indicating that the prediction performance of the two models has been improved. However, the random forest model has a higher predictive ability than the extreme gradient boosting decision tree model. Thus, hyperparameter optimization is of great significance in the improvement of the prediction accuracy of the model. Therefore, the optimized model can generate a high-quality landslide susceptibility map.


2021 ◽  
Vol 11 (11) ◽  
pp. 4993
Author(s):  
Recep Can ◽  
Sultan Kocaman ◽  
Candan Gokceoglu

The success rate in landslide susceptibility mapping efforts increased with the advancements in machine learning algorithms and the availability of geospatial data with high spatial and temporal resolutions. Existing data-driven susceptibility mapping models are not globally applicable due to the high variability of landslide conditioning parameters and the limitations in the availability of up-to-date and accurate data. Among numerous applications, landslide susceptibility maps are essential for site selection and health monitoring of engineering structures, such as dams, for increasing their lifetime and to prevent from disastrous events caused by the damages. In this study, landslide susceptibility mapping performance of XGBoost algorithm was evaluated in a landslide-prone area in the upper basin of Ataturk Dam, which is a prime investment located in the southeast of Turkey. The study area has a size of 2718.7 km2 with an elevation difference of ca. 2000 m and contains 27 lithological units. EU-DEM v1.1 from the Copernicus Programme was used to derive the geomorphological features. High classification accuracy with area under curve value of 0.96 could be obtained from the XGBoost algorithm. According to the results, the main factors controlling the landslides in the study area are the lithology, altitude and topographic wetness index.


Author(s):  
M. Z. Ali ◽  
H.-J. Chu ◽  
S. Ullah ◽  
M. Shafique ◽  
A. Ali

<p><strong>Abstract.</strong> The 2005 Kashmir earthquake has triggered thousands of landslides which devastated most of the livelihood and other infrastructure in the area. Landslide inventory and subsequently landslide susceptibility mapping is one of the main prerequisite for taking mitigation measure against landslide effects. This study has focused on developing most updated and realistic landslide inventory and Susceptibility mapping. The high resolution data of Worldveiw-2 having spatial resolution of 0.4 m is used for landslide inventory. Support Vector Machine (SVM) classifier was used for landslide inventory developing. Total 51460 number of landslides were classified using semi-automatic technique with covering area of 265 Km<sup>2</sup>, smallest landslide mapped is covering area of 2.01 m<sup>2</sup> and the maximum covered area of single landslide is 3.01 Km<sup>2</sup>. Nine influential causative factors are used for landslide susceptibility mapping. Those causative factors include slope, aspect, profile curvature, elevation, distance from fault lines, distance from streams and geology. Logistic regression model was used for the Landslides susceptibility modelling. From model the highest coefficient was assigned to geology which shows that the geology has higher influence in the area. For landslide susceptibility mapping the 70 % of the data was used and 30% is used for the validation of the model. The prediction accuracy of the model in this study is 92 % using validation data. This landslide susceptibility map can be used for land use planning and also for the mitigation measure during any disaster.</p>


2020 ◽  
Vol 9 (3) ◽  
pp. 144 ◽  
Author(s):  
Guirong Wang ◽  
Xi Chen ◽  
Wei Chen

The areas where landslides occur frequently pose severe threats to the local population, which necessitates conducting regional landslide susceptibility mapping (LSM). In this study, four models including weight-of-evidence (WoE) and three WoE-based models, which were linear discriminant analysis (LDA), Fisher’s linear discriminant analysis (FLDA), and quadratic discriminant analysis (QDA), were used to obtain the LSM in the Nanchuan region of Chongqing, China. Firstly, a dataset was prepared from sixteen landslide causative factors, including eight topographic factors, three distance-related factors, and five environmental factors. A landslide inventory map including 298 landslide locations was also constructed and randomly divided with a ratio of 70:30 as training and validation data. Subsequently, the WoE method was used to estimate the relationship between landslides and the landslide causative factors, which assign a weight value to each class of causative factors. Finally, four models were applied using the training dataset, and the predictive performance of each model was compared using the validation datasets. The results showed that FLDA had a higher performance than the other three models according to the success rate curve (SRC) and prediction rate curve (PRC), illustrating that it could be considered a promising approach for landslide susceptibility mapping in the study area.


Sign in / Sign up

Export Citation Format

Share Document