Identifying Geotechnical Characteristics for Landslide Hazard Indication: A Case Study in Mandi, Himachal Pradesh, India

2022 ◽  
Vol 15 (2) ◽  
Author(s):  
Naresh Mali ◽  
Dericks P. Shukla ◽  
Venkata Uday Kala
2006 ◽  
Vol 41 (4) ◽  
pp. 482-485 ◽  
Author(s):  
Surinder Singh ◽  
Dinesh Kumar Sharma ◽  
Sunil Dhar ◽  
Surjit Singh Randhawa

Author(s):  
Amir Ahmadipur ◽  
Alexander McKenzie-Johnson ◽  
Ali Ebrahimi ◽  
Anthony H. Rice

Abstract This paper presents a case study of a landslide with the potential to affect four operating high-pressure natural gas pipelines located in the south-central US state of Mississippi. This case study follows a landslide hazard management process: beginning with landslide identification, through pipeline monitoring using strain gauges with an automated early alert system, to detection of landslide movement and its effects on the pipeline, completion of a geotechnical subsurface investigation, conceptual geotechnical mitigation planning, landslide stabilization design and construction, and stress relief excavation. Each step of the landslide hazard management process is described in this case study.


The aim of the present study is to determine the physical and geotechnical characteristics of municipal solid waste (MSW) from an open dump site located in Una town, Himachal Pradesh (India) for the analysis of settlement and structural stability of landfill. Degraded waste was tested for different time intervals ranging from 6 months to 6 years. The physical characterization and the geotechnical tests were performed to determine the composition and the engineering properties of MSW respectively. The presence of moisture content in the fresh waste was 49.5±1.05% but for the degraded (or old) waste it varied between 39.8 to 51.6%. The specific gravity of fresh and old waste varied between 1.83±0.05 and 1.85 for 6 months old waste and 2.28 for 5-6 years old degraded waste respectively. The maximum dry density (MDD) was observed to be 4.28 kN/m2 for fresh waste at the optimum moisture content (OMC) of 78.1% and 4.47 kN/m3 for 6 months old waste and 6.25 kN/m3 for the degraded waste of 5-6 years at 80.2, 85.4% of OMC respectively. The hydraulic conductivity (k) of MSW was found to be decreasing with the degradation of MSW and the overburden pressure whereas the shear strength increased along with the degradation of the waste. The cohesion (c) and angle of internal friction (φ) increased respectively from 31.2 kPa(fresh) to 38 kPa(degraded) and 14° to 22° with the increase in waste degradation. The compression ratio of fresh waste was within the ranges of 0.19-0.29 and for degraded MSW it varied between 0.12 for 6 months old waste and 0.17 for 5-6 years old degraded waste respectively.


Sign in / Sign up

Export Citation Format

Share Document