Productivity calculating method in tight gas reservoirs considering the stress sensitivity

2022 ◽  
Vol 15 (2) ◽  
Author(s):  
Jie He ◽  
Xiangdong Guo ◽  
Hongjun Cui ◽  
Kaiyu Lei ◽  
Yanyun Lei ◽  
...  
Geofluids ◽  
2017 ◽  
Vol 2017 ◽  
pp. 1-16 ◽  
Author(s):  
Renyi Cao ◽  
Liyou Ye ◽  
Qihong Lei ◽  
Xinhua Chen ◽  
Y. Zee Ma ◽  
...  

Some tight sandstone gas reservoirs contain mobile water, and the mobile water generally has a significant impact on the gas flowing in tight pores. The flow behavior of gas and water in tight pores is different than in conventional formations, yet there is a lack of adequate models to predict the gas production and describe the gas-water flow behaviors in water-bearing tight gas reservoirs. Based on the experimental results, this paper presents mathematical models to describe flow behaviors of gas and water in tight gas formations; the threshold pressure gradient, stress sensitivity, and relative permeability are all considered in our models. A numerical simulator using these models has been developed to improve the flow simulation accuracy for water-bearing tight gas reservoirs. The results show that the effect of stress sensitivity becomes larger as water saturation increases, leading to a fast decline of gas production; in addition, the nonlinear flow of gas phase is aggravated with the increase of water saturation and the decrease of permeability. The gas recovery decreases when the threshold pressure gradient (TPG) and stress sensitivity are taken into account. Therefore, a reasonable drawdown pressure should be set to minimize the damage of nonlinear factors to gas recovery.


2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Zhongwei Wu ◽  
Chuanzhi Cui ◽  
Zhen Wang ◽  
Yingfei Sui ◽  
Peifeng Jia ◽  
...  

Multiple fractured horizontal wells have been widely used to develop unconventional tight gas reservoirs. Currently, many well testing models were established to study the performance of fractured horizontal wells in tight gas reservoirs. However, none of these models thoroughly takes stress-sensitivity of natural fractures and variable conductivity of artificial fractures into consideration. Based on the consideration of stress-sensitivity of natural fractures and variable conductivity of artificial fractures, a novel well testing model for fractured horizontal well in tight gas reservoirs is proposed. And the semianalytical solution of this new model is obtained by dividing the artificial fracture into different segments under the integrative methods of Laplace transformation, point source function, perturbation theory, superposition principle, and Stehfest numerical inversion. After validation, the semianalytical solution is consistent with that of Zerzar’s model (2004). Also, typical pressure and pressure derivative curves are plotted. According to typical curves, seven regimes can be derived, namely, bilinear flow, linear flow, early-time pseudoradial flow, biradial flow, intermediate-time pseudoradial flow, and pseudo-steady state interporosity flow, and late-time pseudoradial flow can be identified. In addition, this paper analyzes the impact on pressure and pressure derivative curves exerted by variable conductivity and stress-sensibility. The results show that variable conductivity mainly affects the early flow regimes, including bilinear flow, linear flow, and early-time radial flow, while the stress-sensitivity mainly affects the later flow regimes, including intermediate-time pseudoradial flow, pseudo-steady state interporosity flow, and late-time pseudoradial flow. The typical curves will ascend with the increasing of stress-sensitivity coefficient. The research provides a method for precise prediction of formation parameters and has a significant impact on the tight gas reservoir development.


2008 ◽  
Author(s):  
Hans de Koningh ◽  
Bernd Heinrich Herold ◽  
Koksal Cig ◽  
Fahd Ali ◽  
Sultan Mahruqy ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document