A Case Study on Forewarning of Yellow Rust Affected Areas on Wheat Crop Using Satellite Data

2013 ◽  
Vol 42 (2) ◽  
pp. 335-342 ◽  
Author(s):  
Sujay Dutta ◽  
Suresh Kumar Singh ◽  
Mukesh Khullar
2015 ◽  
Vol 36 (3) ◽  
pp. 308-323 ◽  
Author(s):  
Panchagnula Manjusree ◽  
Chandra Mohan Bhatt ◽  
Asiya Begum ◽  
Goru Srinivasa Rao ◽  
Veerubhotla Bhanumurthy

2016 ◽  
Vol 16 (7) ◽  
pp. 1742-1756 ◽  
Author(s):  
Amrita Daripa ◽  
Arti Bhatia ◽  
Sankalpa Ojha ◽  
Ritu Tomer ◽  
Sudipta Chattaraj ◽  
...  

2021 ◽  
Author(s):  
Joanna Joiner ◽  
Zachary Fasnacht ◽  
Bo-Cai Gao ◽  
Wenhan Qin

Satellite-based visible and near-infrared imaging of the Earth's surface is generally not performed in moderate to highly cloudy conditions; images that look visibly cloud covered to the human eye are typically discarded. Here, we expand upon previous work that employed machine learning (ML) to estimate underlying land surface reflectances at red, green, and blue (RGB) wavelengths in cloud contaminated spectra using a low spatial resolution satellite spectrometer. Specifically, we apply the ML methodology to a case study at much higher spatial resolution with the Hyperspectral Imager for the Coastal Ocean (HICO) that flew on the International Space Station (ISS). HICO spatial sampling is of the order of 90 m. The purpose of our case study is to test whether high spatial resolution features can be captured using multi-spectral imaging in lightly cloudy and overcast conditions. We selected one clear and one cloudy image over a portion ofthe panhandle coastline of Florida to demonstrate that land features are partially recoverable in overcast conditions. Many high contrast features are well recovered in the presence of optically thin clouds. However, some of the low contrast features, such as narrow roads, are smeared out in the heavily clouded part of the reconstructed image. This case study demonstrates that our approach may be useful for many science and applications that are being developed for current and upcoming satellite missions including precision agriculture and natural vegetation analysis, water quality assessment as well as disturbance, change, hazard, and disaster detection.


Sign in / Sign up

Export Citation Format

Share Document