An academic approach to the multidisciplinary development of liquid-oxygen turbopumps for space applications

2018 ◽  
Vol 11 (2) ◽  
pp. 193-203
Author(s):  
Julian D. Pauw ◽  
Lucrezia Veggi ◽  
Oskar J. Haidn ◽  
Christian Wagner ◽  
Thomas Thümmel ◽  
...  
1991 ◽  
Vol 113 (3) ◽  
pp. 555-561 ◽  
Author(s):  
F. K. Choy ◽  
M. J. Braun ◽  
Y. Hu

Hydrodynamic/hydrostatic journal bearings have been widely used in various types of high speed rotating machinery. For space applications, the issue of using cryogenic fluids as working lubricants has steadily gained in significance. The primary goal of this paper is to model the nonlinearities that occur in a hydrodynamic journal bearing with both cryogenic and oil lubricants. Results will be examined through bearing fluid film pressure distribution and bearing linear and nonlinear stiffness characteristics. The numerical model that couples a variable property Reynolds equation with the dynamics of the rotor is solved by means of a finite difference solution technique. The procedure for the fluid film pressure solution involves an iterative scheme that solves the Reynolds equation coupled with the equations of state for liquid oxygen (LO2). The pressure curve is then integrated to calculate bearing supporting forces. A two-dimensional Newton-Raphson iteration method is used to locate the journal equilibrium position from which both linear and nonlinear bearing stiffness are evaluated by means of the small perturbation technique. The effects of load on the linear/nonlinear plain journal bearing characteristics are analyzed and presented in a parametric form. The relationship between the accuracy of the linear solution and the various orders (3rd, 5th, and 7th power for ΔX) of the nonlinear approximation are also discussed. The validity of both linear and nonlinear solutions at various distances from the journal equilibrium position is also examined. A complete parametric study on the effects of load, temperature, operating speed, and shaft misalignment will be given in Part 2 of this paper.


Author(s):  
Khodadad Mostakim ◽  
Nahid Imtiaz Masuk ◽  
Md. Rakib Hasan ◽  
Md. Shafikul Islam

The advancement in 3D printing has led to the rapid growth of 4D printing technology. Adding time, as the fourth dimension, this technology ushered the potential of a massive evolution in fields of biomedical technologies, space applications, deployable structures, manufacturing industries, and so forth. This technology performs ingenious design, using smart materials to create advanced forms of the 3-D printed specimen. Improvements in Computer-aided design, additive manufacturing process, and material science engineering have ultimately favored the growth of 4-D printing innovation and revealed an effective method to gather complex 3-D structures. Contrast to all these developments, novel material is still a challenging sector. However, this short review illustrates the basic of 4D printing, summarizes the stimuli responsive materials properties, which have prominent role in the field of 4D technology. In addition, the practical applications are depicted and the potential prospect of this technology is put forward.


2005 ◽  
Vol 15 (4) ◽  
pp. 413-422 ◽  
Author(s):  
Michael M. Micci ◽  
S. J. Lee ◽  
B. Vieille ◽  
C. Chauveau ◽  
Iskendar Gokalp

Author(s):  
T. D. McCay ◽  
J. B. Bible ◽  
R. E. Mueller ◽  
M. H. McCay ◽  
C. M. Sharp ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document