Nonlinear Effects in a Plain Journal Bearing: Part 1—Analytical Study

1991 ◽  
Vol 113 (3) ◽  
pp. 555-561 ◽  
Author(s):  
F. K. Choy ◽  
M. J. Braun ◽  
Y. Hu

Hydrodynamic/hydrostatic journal bearings have been widely used in various types of high speed rotating machinery. For space applications, the issue of using cryogenic fluids as working lubricants has steadily gained in significance. The primary goal of this paper is to model the nonlinearities that occur in a hydrodynamic journal bearing with both cryogenic and oil lubricants. Results will be examined through bearing fluid film pressure distribution and bearing linear and nonlinear stiffness characteristics. The numerical model that couples a variable property Reynolds equation with the dynamics of the rotor is solved by means of a finite difference solution technique. The procedure for the fluid film pressure solution involves an iterative scheme that solves the Reynolds equation coupled with the equations of state for liquid oxygen (LO2). The pressure curve is then integrated to calculate bearing supporting forces. A two-dimensional Newton-Raphson iteration method is used to locate the journal equilibrium position from which both linear and nonlinear bearing stiffness are evaluated by means of the small perturbation technique. The effects of load on the linear/nonlinear plain journal bearing characteristics are analyzed and presented in a parametric form. The relationship between the accuracy of the linear solution and the various orders (3rd, 5th, and 7th power for ΔX) of the nonlinear approximation are also discussed. The validity of both linear and nonlinear solutions at various distances from the journal equilibrium position is also examined. A complete parametric study on the effects of load, temperature, operating speed, and shaft misalignment will be given in Part 2 of this paper.

1989 ◽  
Vol 111 (3) ◽  
pp. 426-429 ◽  
Author(s):  
T. Kato ◽  
Y. Hori

A computer program for calculating dynamic coefficients of journal bearings is necessary in designing fluid film journal bearings and an accuracy of the program is sometimes checked by the relation that the cross terms of linear damping coefficients of journal bearings are equal to each other, namely “Cxy = Cyx”. However, the condition for this relation has not been clear. This paper shows that the relation “Cxy = Cyx” holds in any type of finite width journal bearing when these are calculated under the following condition: (I) The governing Reynolds equation is linear in pressure or regarded as linear in numerical calculations; (II) Film thickness is given by h = c (1 + κcosθ); and (III) Boundary condition is homogeneous such as p=0 or dp/dn=0, where n denotes a normal to the boundary.


2021 ◽  
Author(s):  
Harishkumar Kamat ◽  
Chandrakant R. Kini ◽  
Satish B. Shenoy

Abstract High-speed turbomachinery like turbine generators and marine propulsion systems uses special fluid film bearing called externally adjustable pad bearing due to their great advantages. The principal feature of this bearing is to alter the radial clearance and film thickness along the circumferential direction to improve the bearing performance parameters. In the present study, the effect of radial and tilt adjustment of 120° pad both in upward (or negative) and downward (or positive) direction on the bearing performance is predicted for various eccentricity ratios using the CFD technique. Later the influence of fluid film pressure on the bearing pad is examined using the FSI technique. Furthermore, the effect of eccentricity ratio on the bearing performance and also on pad structure is also analyzed using CFD coupled FSI analysis. The solution technique of the present numerical analysis is validated with the already published literature and the results are in good agreement. The numerical results suggest that for bearing with negative radial and negative tilt adjustment, bearing performance is superior compared to the other adjustments. However, the structural deformation is also significant for the negative radial and negative tilt adjustment. It is also observed that pad deformation increases with the increase in eccentricity ratio as there has been a rise in fluid film pressure.


Author(s):  
Lihua Yang ◽  
Weimin Wang ◽  
Lie Yu

In this paper, the analytic solutions of oil-film forces in infinite-short cylindrical journal bearing are calculated by solving its corresponding Reynolds equation. On this base, the linear and nonlinear dynamic coefficients of the bearing are predicted. By comparing the dynamic oil-film forces approximately represented by dynamic coefficients with the analytic solutions, the accuracy of this representation model is investigated. The results show that more orders of dynamic coefficients are included in representation model, the obtained approximate oil-film forces are more close to their analytic solutions. This can be a reference to illustrate the feasibility and applicability of representing oil-film forces by applying the dynamic coefficients of bearings.


2017 ◽  
Vol 69 (4) ◽  
pp. 574-584 ◽  
Author(s):  
Anil B. Shinde ◽  
Prashant M. Pawar

Purpose This study aims to improve the performance of hydrodynamic journal bearings through partial grooving on the bearing surface. Design/methodology/approach Bearing performance analysis is numerically carried out using the thin film flow physics of COMSOL Multiphysics 5.0 software. Initially, the static performance analysis is carried out for hydrodynamic journal bearing system with smooth surface, and the results of the same are validated with results from the literature. In the later part of the paper, the partial rectangular shape micro-textures are modeled on bearing surface. The effects of partial groove pattern on the bearing performance parameters, namely, fluid film pressure, load carrying capacity, frictional power loss and frictional torque, are studied in detail. Findings The numerical results show that the values of maximum fluid film pressure, load carrying capacity, frictional power loss and frictional torque are considerably improved due to deterministic micro-textures. Bearing surface with partial groove along 90°-180° region results in 81.9 per cent improvement in maximum fluid film pressure and 75.9 per cent improvement in load carrying capacity as compared with smooth surface of journal bearing, with no increase in frictional power loss and frictional torque. Maximum decrease in frictional power loss and frictional torque is observed for partially grooving along 90°-360° region. The simulations are supported by proof-of-concept experimentation. Originality/value This study is useful in the appropriate selection of groove parameters on bearing surface to the bearing performance characteristics.


1973 ◽  
Vol 15 (2) ◽  
pp. 123-131 ◽  
Author(s):  
D. V. Singh ◽  
R. Sinhasan ◽  
H. N. Singh

A solution of Reynolds equation for journal bearing with axes skew has been proposed which is valid for any extent of positive film. Pressure distribution, Sommerfeld number, and friction coefficient parameter have been obtained for some arbitrarily chosen skew values.


Author(s):  
Anil Dhanola ◽  
Hem Chander Garg

The present experimental study explores the performance of Hydrodynamic journal bearings operating with vegetable oil-based nanolubricants. For this study, titanium oxide nanoparticles have been added to canola oil by varying the volume fraction from 0% to 0.04%. An assessment of performance characteristics has been done by using a journal-bearing test rig under different operating conditions. The outcome of the experimental results aimed at the addition of nanoparticles to base lubricants to improve the performance was observed to be favorable. However, under high operating conditions, the influence of nanoparticles is observed to be less useful. The fluid film pressure of nanolubricants increased up to a specific volume concentration of titanium oxide nanoparticles (i.e. 0.02%) beyond which no further enhancement was observed. At a load of 3000 N, the fluid film pressure increased up to 10%, when a bearing is lubricated using canola oil with a 0.02% volume fraction of nanoparticles. The heat transfer rate was found to be higher for nanolubricants in comparison to a base oil and the fluid film temperature was reduced by up to 15% at a volume fraction of 0.04%. Furthermore, rheological studies reveal that the prepared nanolubricants exhibited Newtonian behavior under the given conditions. The percentage increment of viscosity varied from 2.1% to 15.4% and 2.43% to 13.89% for a volume fraction ranging from 0.01% to 0.04% at a temperature of 40 °C and 100 °C, respectively. The dynamic light scattering results confirmed that the particles were well distributed in a base lubricant without much aggregation.


Author(s):  
Saeid Dousti ◽  
Jianming Cao ◽  
Amir Younan ◽  
Paul Allaire ◽  
Tim Dimond

Fluid film bearings are commonly analyzed with the conventional Reynolds equation, without any temporal inertia effects, developed for oil or other high viscosity lubricants. In applications with rapidly time varying external loads, e.g. ships on wavy oceans, temporal inertia effect should be taken into account. As rotating speeds increase in industrial machines and the reduced Reynolds number increases above the turbulent threshold, a form of linearized turbulence model is often used to increase the effective viscosity to take the turbulence into account. Other than the turbulence effect, with high reduced Reynolds number, convective inertia effect gains importance. Water or other low viscosity fluid film bearings used in subsea machines and compressors are potential applications with a highly reduced Reynolds number.” This paper extends the theory originally developed by Tichy [1] for impulsive loads to high reduced Reynolds number lubrication in different bearing configurations. Both fluid shear and pressure gradient terms are included in the velocity profiles across the lubricant film. The incompressible continuity equation and Navier Stokes equations, including the temporal inertia term, are simplified using an averaged velocity approach to obtain an extended form of Reynolds equation which applies to both laminar and turbulent flow. All terms in the Navier Stokes equation, including both the convective and temporal inertia terms are included in the analysis. The inclusion of the temporal inertia term creates a fluid acceleration term in the extended Reynolds equation. A primary advantage of this formulation is that fluid film bearings lubricated with low viscosity lubricants which are subject to high force slew rates can be analyzed with this extended Reynolds equation. A short bearing form of the extended Reynolds equation is developed with appropriate boundary conditions. A full kinematic analysis of the short journal bearing is developed including time derivatives up to and including shaft accelerations. Linearized stiffness, damping and mass coefficients are developed for a plain short journal bearing. A time transient solution is developed for the pressure and bearing loads in plain journal bearings supporting a symmetric rigid rotor when the rotor is subjected to rapidly applied large forces. The change in the rotor displacements when subjected to unbalance forces is explored. Several comparisons between conventional Reynolds equation solutions and the extended Reynolds number form with temporal inertia effects will be presented and discussed.


1997 ◽  
Vol 119 (4) ◽  
pp. 802-807 ◽  
Author(s):  
Carmen M. Mu¨ller-Karger ◽  
Andre´s L. Granados

A linear analysis of the parameters for the orbital transient response of journal-bearing systems is made with the purpose of computing the bearing dynamic coefficients using the minimum square method. The journal-bearing response is obtained from a nonlinear simulation that includes a transient solution of the Reynolds equation. The minimum square method permits the adjustment of coefficients with only one orbit and does not need prior linearization of the response. Therefore it was found to be advantageous compared with the more traditional experimental method of using a frequency domain method with two orbital responses. Three different Sommerfeld numbers were analyzed. Comparisons between the eight adjusted coefficients and the linear coefficients obtained from perturbations of the Reynolds equation about the equilibrium position permit the establishment of the ranges where the bearings behave linearly.


Author(s):  
E. Vijaya Kumar ◽  
Vikas M. Phalle ◽  
Satish C. Sharma ◽  
S. C. Jain

In recent times Hydrostatic journal bearings have received considerable amount of attention by the researchers on account of their excellent performance as compared to other class of bearings. The objective of the present paper is to presents an analysis of a four-pocket capillary-compensated worn hydrostatic journal bearing system. The FEM has been used to solve the Reynolds equation governing the flow of lubricant in the clearance space of a multirecess journal bearing system together with capillary restrictor flow equation as a constant. The bearing performance characteristics of a capillary compensated 4-pocket worn hydrostatic journal bearing have been presented for a wide range of values of external load and nondimensional wear depth parameters. The numerically simulated results of bearing characteristics parameters in terms of maximum fluid-film pressure, minimum fluid-film thickness, lubricant flow rate and fluid film reaction have been presented. The simulated results suggest that for an accurate prediction of bearing characteristics data it is essential to include the effect of wear in the analysis of the hydrostatic journal bearing system.


1985 ◽  
Vol 107 (1) ◽  
pp. 68-74 ◽  
Author(s):  
R. H. Buckholz

The importance of rheological properties of lubricants has arisen from the realization that non-Newtonian fluid effects are manifested over a broad range of lubrication applications. In this paper a theoretical investigation of short journal bearings performance characteristics for non-Newtonian power-law lubricants is given. A modified form of the Reynolds’ equation for hydrodynamic lubrication is studied in the asymptotic limit of small slenderness ratio (i.e., bearing length to diameter, L/D = λ→0). Fluid film pressure distributions in short bearings of arbitrary azimuthal length are studied using matched asymptotic expansions in the slenderness ratio. The merit of the short bearing approach used in solving a modified Reynolds’ equation by the method of matched asymptotic expansions is emphasized. Fluid film pressure distributions are determined without recourse to numerical solutions to a modified Reynolds’ equation. Power-law rheological exponents less than and equal to one are considered; power-law fluids exhibit reduced load capacities relative to the Newtonian fluid. The cavitation boundary shape is determined from Reynolds’ free surface condition; and the boundary shape is shown to be independent of the bearing eccentricity ratio.


Sign in / Sign up

Export Citation Format

Share Document