droplet surface
Recently Published Documents


TOTAL DOCUMENTS

254
(FIVE YEARS 86)

H-INDEX

25
(FIVE YEARS 5)

2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Hongxia Hao ◽  
Itai Leven ◽  
Teresa Head-Gordon

AbstractReaction rates of common organic reactions have been reported to increase by one to six orders of magnitude in aqueous microdroplets compared to bulk solution, but the reasons for the rate acceleration are poorly understood. Using a coarse-grained electron model that describes structural organization and electron densities for water droplets without the expense of ab initio methods, we investigate the electric field distributions at the air-water interface to understand the origin of surface reactivity. We find that electric field alignments along free O–H bonds at the surface are ~16 MV/cm larger on average than that found for O–H bonds in the interior of the water droplet. Furthermore, electric field distributions can be an order of magnitude larger than the average due to non-linear coupling of intramolecular solvent polarization with intermolecular solvent modes which may contribute to even greater surface reactivity for weakening or breaking chemical bonds at the droplet surface.


Crystals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 65
Author(s):  
Niloofar Esmaeildoost ◽  
Olof Jönsson ◽  
Trevor A. McQueen ◽  
Marjorie Ladd-Parada ◽  
Hartawan Laksmono ◽  
...  

Understanding how ice nucleates and grows into larger crystals is of crucial importance for many research fields. The purpose of this study was to shed light on the phase and structure of ice once a nucleus is formed inside a metastable water droplet. Wide-angle X-ray scattering (WAXS) was performed on micron-sized droplets evaporatively cooled to temperatures where homogeneous nucleation occurs. We found that for our weak hits ice grows more cubic compared to the strong hits that are completely hexagonal. Due to efficient heat removal caused by evaporation, we propose that the cubicity of ice at the vicinity of the droplet’s surface is higher than for ice formed within the bulk of the droplet. Moreover, the Bragg peaks were classified based on their geometrical shapes and positions in reciprocal space, which showed that ice grows heterogeneously with a significant population of peaks indicative of truncation rods and crystal defects. Frequent occurrences of the (100) reflection with extended in-planar structure suggested that large planar ice crystals form at the droplet surface, then fracture into smaller domains to accommodate to the curvature of the droplets. Planar faulting due to misaligned domains would explain the increased cubicity close to the droplet surface.


2022 ◽  
pp. 118-140
Author(s):  
Ali Zeytunluoglu ◽  
Idris Arslan

Nanoemulsions are an isotropical mixture of oil, surfactant, and water with droplet diameter approximately in the range of 10-100 nm. They are being exponentially used for drug delivery systems for the influential administration of therapeutical agents because of their potential advantages over other approaches. Nanoemulsions can be used to design delivery systems that have increased drug loading, enhanced drug solubility, increased bioavailability, controlled drug release, and enhanced protection against chemical or enzymatic degradation. Moreover, nanoemulsions have better thermodynamical stability to flocculation, sedimentation, and creaming than conventional emulsions. Their small droplet dimensions and large droplet surface area positively influence drug transport and delivery, along with allowing targeting to specific sites. This chapter focuses on recent applications of nanoemulsions in the area of drug delivery.


Author(s):  
A. Fallast ◽  
A. R. Rapf ◽  
A. Tramposch ◽  
W. Hassler

AbstractWithin the certification process of aircraft, tests under specific icing conditions are required. For such safety relevant tests—which are performed under defined and repeatable test conditions—specially equipped Icing Wind Tunnels (IWT) are required. In such IWTs, supercooled water droplets are created with the aid of a spray system injecting pre-tempered water droplets of specific diameters into the free stream air flow. Especially tests with a droplet size up to 2mm (Supercooled Large Droplets - SLDs) are of great importance. SLDs are difficult to generate under laboratory conditions in IWT since usually the available droplet flight time from the injection location to the impact position on the test object is insufficient to reliably cool down a droplet at least to freezing temperature. To investigate the limitations associated with the application of SLD, the current work provides a method to allow detailed insight into the behavior of droplets on the path from the injection spray nozzle to the test section. In this work a state space model of a single droplet is derived that combines the kinetic aspects, thermal properties as well as the governing differential equations for motion, convective heat transfer at the droplet surface and heat conduction inside the droplet. Beside the states for the droplet’s position and velocity in space, the state space vector comprises various fluid and thermodynamic parameters. The droplet-internal temperature distribution is modelled by a discrete one-dimensional spherical shell model that also incorporates the aggregate phase (freezing mass fraction) at each shell node. This approach allows, therefore, the simulation of potential droplet phase change processes (freezing/melting) as well. With the model at hand, the influence of various boundary conditions (initial droplet temperature, flow field, ambient air temperature, etc.) can be determined and evaluated. As a result, concrete measures to achieve a desired operating condition (e.g. droplet temperature at the test object) for various model assumptions can be derived. In addition, the simulation model facilitates the prediction of the droplet diameter threshold for ensuring a supercooled state upon the impact on the test object. The governing theoretical influences are described, and various simulation results for representative test conditions that occur at the Rail-Tec-Arsenal (RTA) in Vienna are presented.


Coatings ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1377
Author(s):  
Abba Abdulhamid Abubakar ◽  
Bekir Sami Yilbas ◽  
Mubarak Yakubu ◽  
Hussain Al-Qahtani ◽  
Ghassan Hassan ◽  
...  

In this paper, the impact mechanisms of a water droplet on hydrophobized micro-post array surfaces are examined and the influence of micro-post arrays spacing on the droplet behavior in terms of spreading, retraction, and rebounding is investigated. Impacting droplet behavior was recorded using a high-speed facility and flow generated in the droplet fluid was simulated in 3D geometry accommodating conditions of the experiments. Micro-post arrays were initially formed lithographically on silicon wafer surfaces and, later, replicated by polydimethylsiloxane (PDMS). The replicated micro-post arrays surfaces were hydrophobized through coating by functionalized nano-silica particles. Hydrophobized surfaces result in a contact angle of 153° ± 3° with a hysteresis of 3° ± 1°. The predictions of the temporal behavior of droplet wetting diameter during spreading agree with the experimental data. Increasing micro-post arrays spacing reduces the maximum spreading diameter on the surface; in this case, droplet fluid penetrated micro-posts spacing creates a pinning effect while lowering droplet kinetic energy during the spreading cycle. Flow circulation results inside the droplet fluid in the edge region of the droplet during the spreading period; however, opposing flow occurs from the outer region towards the droplet center during the retraction cycle. This creates a stagnation zone in the central region of the droplet, which extends towards the droplet surface onset of droplet rebounding. Impacting droplet mitigates dust from hydrophobized micro-post array surfaces, and increasing droplet Weber number increases the area of dust mitigated from micro-post arrays surfaces.


2021 ◽  
Vol 21 (21) ◽  
pp. 16387-16411
Author(s):  
Nønne L. Prisle

Abstract. This work presents a thermodynamically consistent framework that enables self-contained, predictive Köhler calculations of droplet growth and activation with considerations of surface adsorption, surface tension reduction, and non-ideal water activity for chemically complex and unresolved surface-active aerosol mixtures. The common presence of surface-active species in atmospheric aerosols is now well-established. However, the impacts of different effects driven by surface activity, in particular bulk–surface partitioning and resulting bulk depletion and/or surface tension reduction, on aerosol hygroscopic growth and cloud droplet activation remain to be generally established. Because specific characterization of key properties, including water activity and surface tension, remains exceedingly challenging for finite-sized activating droplets, a self-contained and thermodynamically consistent model framework is needed to resolve the individual effects of surface activity during droplet growth and activation. Previous frameworks have achieved this for simple aerosol mixtures, comprising at most a few well-defined chemical species. However, atmospheric aerosol mixtures and more realistic laboratory systems are typically chemically more complex and not well-defined (unresolved). Therefore, frameworks which require specific knowledge of the concentrations of all chemical species in the mixture and their composition-dependent interactions cannot be applied. For mixtures which are unresolved or where specific interactions between components are unknown, analytical models based on retrofitting can be applied, or the mixture can be represented by a proxy compound or mixture with well-known properties. However, the surface activity effects evaluated by such models cannot be independently verified. The presented model couples Köhler theory with the Gibbs adsorption and Szyszkowski-type surface tension equations. Contrary to previous thermodynamic frameworks, it is formulated on a mass basis to obtain a quantitative description of composition-dependent properties for chemically unresolved mixtures. Application of the model is illustrated by calculating cloud condensation nuclei (CCN) activity of aerosol particles comprising Nordic aquatic fulvic acid (NAFA), a chemically unresolved and strongly surface-active model atmospheric humic-like substance (HULIS), and NaCl, with dry diameters of 30–230 nm and compositions spanning the full range of relative NAFA and NaCl mixing ratios. For comparison with the model presented, several other predictive Köhler frameworks, with simplified treatments of surface-active NAFA, are also applied. Effects of NAFA surface activity are gauged via a suite of properties evaluated for growing and activating droplets. The presented framework predicts a similar influence of surface activity of the chemically complex NAFA on CCN activation as was previously shown for single, strong surfactants. Comparison to experimental CCN data shows that NAFA bulk–surface partitioning is well-represented by Gibbs adsorption thermodynamics. Contrary to several recent studies, no evidence of significantly reduced droplet surface tension at the point of activation was found. Calculations with the presented thermodynamic model show that throughout droplet growth and activation, the finite amounts of NAFA in microscopic and submicron droplets are strongly depleted from the bulk, due to bulk–surface partitioning, because surface areas for a given bulk volume are very large. As a result, both the effective hygroscopicity and ability of NAFA to reduce droplet surface tension are significantly lower in finite-sized activating droplets than in macroscopic aqueous solutions of the same overall composition. The presented framework enables the influence of surface activity on CCN activation for other chemically complex and unresolved aerosol mixtures, including actual atmospheric samples, to be systematically explored. Thermodynamic input parameters can be independently constrained from measurements, instead of being either approximated by a proxy or determined by retrofitting, potentially confounding several mechanisms influenced by surface activity.


2021 ◽  
Author(s):  
Masakazu Iwasaka

Micromanipulation using acoustic sound is a promising technique for drug delivery, cell manipulation, biosensors, and microfluidic devices. Additionally, the visualization of acoustic fields by advanced optical measurement techniques can be combined with this micromanipulation technique. The present study reveals that a lattice pattern of reflected light appears on the surface of water droplets containing microparticles when the droplets are exposed to audible sound in the range of 1900 to 10000 Hz. A piezoelectric membrane providing an audible acoustic field induced a stream of microparticles on which the lattice pattern overlapped, with the appearance of a standing wave. The effects of microparticles, including BaSO4, TiO2, and guanine platelets derived from fish scales, on the formation of the lattice pattern were investigated. These three types of microparticles in water enabled a visualization of the vortex streams and generated a lattice pattern of reflected light. The guanine platelets exhibited the most precise lattice pattern over the droplet surface, with a lattice width of 100 to 200 μm. This phenomenon may provide a new tool for detecting and manipulating micro vortex flows in the aqueous chamber of a microfluidic device combined with an acoustic transducer.


2021 ◽  
Vol 2076 (1) ◽  
pp. 012042
Author(s):  
Zhengyang Fei ◽  
Jiajia Deng ◽  
Jinshu Lu ◽  
Bin Wang ◽  
Dawen Xue

Abstract The evaporation process of LNG droplets in BOG is closely related to the cooling down process of the LNG tank, but there isn’t an available droplet evaporation model at present. Been prepared based on the conservation of mass, momentum, and energy, a CFD model of natural convection evaporation of a single LNG saturated droplet in the BOG was developed and applied. The results show that:①There are two distinguished zones around the droplet surface, where the local temperature boundary layer of the droplet gradually thickens and rapidly thickens with the increase of the angle of inflow from 0 ° to 90 ° and from 90 ° to 180 °, respectively; ② With the increase of droplet size, the average thickness of temperature boundary layer increases gradually, which leads to the decrease of relative evaporation rate;③“blowing effect” remains almost unchanged with the increase of droplet size.


2021 ◽  
Vol 10 (11) ◽  
pp. 3363-3380
Author(s):  
Kwassi Anani

The transient heating of a spherical droplet at rest in a hot gas environment, is analysed when the temperature distribution is initially assumed to be non uniform inside the droplet. A combined method of integral transforms, namely the classical Fourier cosine transform together with the unilateral Laplace transform, is used in solving the resulting initial-boundary value problem, stated in the dimensionless form. Explicit solutions of the problem are first obtained in the Laplace domain, and then analytical approximations in short time limits (timessteps) are derived for the droplet internal and surface temperature fields. The analytical approximation for the droplet internal temperature during the time step is proven to be highly accurate, while the innovative recursive formula obtained for the droplet surface temperature may lead to computationally efficient droplets and sprays vaporization models.


2021 ◽  
Vol 929 ◽  
Author(s):  
Shubham Sharma ◽  
Awanish Pratap Singh ◽  
S. Srinivas Rao ◽  
Aloke Kumar ◽  
Saptarshi Basu

The multiscale dynamics of a shock–droplet interaction is crucial in understanding the atomisation of droplets due to external airflow. The interaction phenomena are classified into wave dynamics (stage I) and droplet breakup dynamics (stage II). Stage I involves the formation of different wave structures after an incident shock impacts the droplet surface. These waves momentarily change the droplet's ambient conditions, while in later times they are mainly influenced by shock-induced airflow. Stage II involves induced airflow interaction with the droplet that leads to its deformation and breakup. Primarily, two modes of droplet breakup, i.e. shear-induced entrainment and Rayleigh–Taylor piercing (RTP) (based on the modes of surface instabilities) were observed for the studied range of Weber numbers $(We\sim 30\text{--}15\,000)$ . A criterion for the transition between two breakup modes is obtained, which successfully explains the observation of RTP mode of droplet breakup at high Weber numbers $(We\sim 800)$ . For $We > 1000$ , the breakup dynamics is governed by the shear-induced surface waves. After formation, the Kelvin–Helmholtz waves travel on the droplet surface and merge to form a liquid sheet near the droplet equator. Henceforth, the liquid sheet undergoes breakup processes via nucleation of several holes. The breakup process is recurrent until the complete droplet disintegrates or external drag acting on the droplet is insufficient for further disintegration. At lower Weber numbers, the droplet undergoes complete deformation like a flattened disk, and a multibag mode of breakup based on RTP is observed.


Sign in / Sign up

Export Citation Format

Share Document