Space applications industrial laser system (SAILS): An update

Author(s):  
T. D. McCay ◽  
J. B. Bible ◽  
R. E. Mueller ◽  
M. H. McCay ◽  
C. M. Sharp ◽  
...  
2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Dariusz Świerad ◽  
Sebastian Häfner ◽  
Stefan Vogt ◽  
Bertrand Venon ◽  
David Holleville ◽  
...  

Author(s):  
M. W. Wright ◽  
D. Franzen ◽  
H. Hemmati ◽  
M. Sandor

A compact microchip laser pumped by a single fiber coupled diode laser was developed for a scanning laser radar instrument called Laser Mapper (LAMP) to be used as a guidance and control sensor in future JPL/NASA missions [1]. The system involves commercial-off-the-shelf components that were packaged and qualified for space applications. In particular, the system has to meet a 5000 hour minimum life requirement on a LEO platform. This paper discusses the process being used and the results of the selection and qualification of a low cost prepackaged diode laser with a custom packaged microchip laser crystal. The environmental testing would be applicable to a variety of commercial photonic systems. The topics to be discussed include: • The selection of the diode pump laser; • Upscreening of commercial parts; • Qualification sampling tests including temperature cycling, vibration, outgassing; • Physical construction analysis. The testing requirements and screening flow to ensure the lifetime reliability will be presented. This was determined based on input from Telcordia standards that apply to optoelectronic systems used in the telecommunications industry but upgraded to account for the unique aspects of the devices, such as the high optical power. The key elements in packaging high power optoelectronic devices for harsh environments include managing the thermal loading through the expected spacecraft temperature extremes and addressing the die mounting, optical fiber coupling and jacket assembly. Each of these aspects will be discussed in light of the testing results.


Author(s):  
Robert Mueller ◽  
Brice Bible ◽  
Mary Helen McCay ◽  
Michael Sharp ◽  
Dwayne McCay

Photonics ◽  
2020 ◽  
Vol 7 (1) ◽  
pp. 12 ◽  
Author(s):  
Linbo Zhang ◽  
Tao Liu ◽  
Long Chen ◽  
Guanjun Xu ◽  
Chenhui Jiang ◽  
...  

The National Time Service Center of China is developing a compact, highly stable, 698 nm external-cavity diode laser (ECDL) for dedicated use in a space strontium optical clock. This article presents the optical design, structural design, and preliminary performance of this ECDL. The ECDL uses a narrow-bandwidth interference filter for spectral selection and a cat’s-eye reflector for light feedback. To ensure long-term stable laser operation suitable for space applications, the connections among all the components are rigid and the design avoids any spring-loaded adjustment. The frequency of the first lateral rocking eigenmode is 2316 Hz. The ECDL operates near 698.45 nm, and it has a current-controlled tuning range over 40 GHz and a PZT-controlled tuning range of 3 GHz. The linewidth measured by the heterodyne beating between the ECDL and an ultra-stable laser with 1 Hz linewidth is about 180 kHz. At present, the ECDL has been applied to the principle prototype of the space ultra-stable laser system.


Author(s):  
Jason R. Heffelfinger ◽  
C. Barry Carter

Yttria-stabilized zirconia (YSZ) is currently used in a variety of applications including oxygen sensors, fuel cells, coatings for semiconductor lasers, and buffer layers for high-temperature superconducting films. Thin films of YSZ have been grown by metal-organic chemical vapor deposition, electrochemical vapor deposition, pulse-laser deposition (PLD), electron-beam evaporation, and sputtering. In this investigation, PLD was used to grow thin films of YSZ on (100) MgO substrates. This system proves to be an interesting example of relationships between interfaces and extrinsic dislocations in thin films of YSZ.In this experiment, a freshly cleaved (100) MgO substrate surface was prepared for deposition by cleaving a lmm-thick slice from a single-crystal MgO cube. The YSZ target material which contained 10mol% yttria was prepared from powders and sintered to 85% of theoretical density. The laser system used for the depositions was a Lambda Physik 210i excimer laser operating with KrF (λ=248nm, 1Hz repetition rate, average energy per pulse of 100mJ).


2006 ◽  
Vol 133 ◽  
pp. 701-703
Author(s):  
J. D. Zuegel ◽  
V. Bagnoud ◽  
J. Bromage ◽  
I. A. Begishev ◽  
J. Puth

Author(s):  
Khodadad Mostakim ◽  
Nahid Imtiaz Masuk ◽  
Md. Rakib Hasan ◽  
Md. Shafikul Islam

The advancement in 3D printing has led to the rapid growth of 4D printing technology. Adding time, as the fourth dimension, this technology ushered the potential of a massive evolution in fields of biomedical technologies, space applications, deployable structures, manufacturing industries, and so forth. This technology performs ingenious design, using smart materials to create advanced forms of the 3-D printed specimen. Improvements in Computer-aided design, additive manufacturing process, and material science engineering have ultimately favored the growth of 4-D printing innovation and revealed an effective method to gather complex 3-D structures. Contrast to all these developments, novel material is still a challenging sector. However, this short review illustrates the basic of 4D printing, summarizes the stimuli responsive materials properties, which have prominent role in the field of 4D technology. In addition, the practical applications are depicted and the potential prospect of this technology is put forward.


Sign in / Sign up

Export Citation Format

Share Document