A revisit to queueing-inventory system with reservation, cancellation and common life time

OPSEARCH ◽  
2016 ◽  
Vol 54 (2) ◽  
pp. 336-350 ◽  
Author(s):  
A. Krishnamoorthy ◽  
Binitha Benny ◽  
Dhanya Shajin
2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Zaiming Liu ◽  
Xuxiang Luo ◽  
Jinbiao Wu

We analyze a queueing-inventory system which can model airline and railway reservation systems. An arriving customer to an idle server joins for service immediately with exactly one item from inventory at the moment of service completion if there are some on-hand inventory, or else he accesses to a buffer of varying size (the buffer capacity varies and equals to the number of the items in the inventory with maximum size S). When the buffer overflows, the customer joins an orbit of infinite capacity with probability p or is lost forever with probability 1−p. Arrivals form a Poisson process, and service time has phase type distribution. The time between any two successive retrials of the orbiting customer is exponentially distributed with parameter depending on the number of customers in the orbit. In addition, the items have a common life time with exponentially distributed. Cancellation of orders is possible before their expiry and intercancellation times are assumed to be exponentially distributed. The stability condition and steady-state probability vector have been studied by Neuts–Rao truncation method using the theory of Level Dependent Quasi-Birth-Death (LDQBD) processes. Several stationary performance measures are also computed. Furthermore, we provide numerical illustration of the system performance with variation in values of underlying parameters and analyze an optimization problem.


2015 ◽  
Vol 247 (1) ◽  
pp. 365-389 ◽  
Author(s):  
A. Krishnamoorthy ◽  
Dhanya Shajin ◽  
B. Lakshmy

2012 ◽  
Vol 2012 ◽  
pp. 1-17 ◽  
Author(s):  
R. Jayaraman ◽  
B. Sivakumar ◽  
G. Arivarignan

A mathematical modelling of a continuous review stochastic inventory system with a single server is carried out in this work. We assume that demand time points form a Poisson process. The life time of each item is assumed to have exponential distribution. We assume(s,S)ordering policy to replenish stock with random lead time. The server goes for a vacation of an exponentially distributed duration at the time of stock depletion and may take subsequent vacation depending on the stock position. The customer who arrives during the stock-out period or during the server vacation is offered a choice of joining a pool which is of finite capacity or leaving the system. The demands in the pool are selected one by one by the server only when the inventory level is aboves, with interval time between any two successive selections distributed as exponential with parameter depending on the number of customers in the pool. The joint probability distribution of the inventory level and the number of customers in the pool is obtained in the steady-state case. Various system performance measures in the steady state are derived, and the long-run total expected cost rate is calculated.


2016 ◽  
Vol 12 (8) ◽  
pp. 6500-6515
Author(s):  
R Jayaraman

In this article, we consider a continuous review perishable inventory system with a finite number of homogeneous sources generating demands. The demand time points form quasi random process and demand is for single item. The maximum storage capacity is assumed to be The life time of each item is assumed to have exponential distribution. The order policy is policy, that is, whenever the inventory level drops to a prefixed level an order for items is placed. The ordered items are received after a random time which is distributed as exponential. We assume that the demands that occur during the stock out periods either enter a pool or leave the system which is according to a Bernoulli trial. The demands in the pool are selected one by one, while the stock is above the level with interval time between any two successive selections is distributed as exponential. The joint probability distribution of the number of customers in the pool and the inventory level is obtained in the steady state case. Various system performance measures are derived to compute the total expected cost per unit time in the steady state. The optimal cost function and the optimal are studied numerically.


Author(s):  
T. Koshikawa ◽  
Y. Fujii ◽  
E. Sugata ◽  
F. Kanematsu

The Cu-Be alloys are widely used as the electron multiplier dynodes after the adequate activation process. But the structures and compositions of the elements on the activated surfaces were not studied clearly. The Cu-Be alloys are heated in the oxygen atmosphere in the usual activation techniques. The activation conditions, e.g. temperature and O2 pressure, affect strongly the secondary electron yield and life time of dynodes.In the present paper, the activated Cu-Be dynode surfaces at each condition are investigated with Scanning Auger Microanalyzer (SAM) (primary beam diameter: 3μmϕ) and SEM. The commercial Cu-Be(2%) alloys were polished with Cr2O3 powder, rinsed in the distilled water and set in the vacuum furnance.Two typical activation condition, i.e. activation temperature 730°C and 810°C in 5x10-3 Torr O2 pressure were chosen since the formation mechanism of the BeO film on the Cu-Be alloys was guessed to be very different at each temperature from the results of the secondary electron emission measurements.


Sign in / Sign up

Export Citation Format

Share Document