Boron removal from metallurgical-grade silicon by CaO–SiO2 slag refining

Rare Metals ◽  
2015 ◽  
Vol 34 (7) ◽  
pp. 522-526 ◽  
Author(s):  
Kui-Xian Wei ◽  
Hai-Fei Lu ◽  
Wen-Hui Ma ◽  
Yan-Long Li ◽  
Zhao Ding ◽  
...  
2014 ◽  
Vol 24 (4) ◽  
pp. 1231-1236 ◽  
Author(s):  
Ji-jun WU ◽  
Yan-long LI ◽  
Wen-hui MA ◽  
Kui-xian WEI ◽  
Bin YANG ◽  
...  

2012 ◽  
Vol 358 (23) ◽  
pp. 3079-3083 ◽  
Author(s):  
Jijun Wu ◽  
Wenhui Ma ◽  
Binjie Jia ◽  
Bin Yang ◽  
Dachun Liu ◽  
...  

2021 ◽  
Vol 118 (6) ◽  
pp. 612
Author(s):  
Yaqiong Li ◽  
Lifeng Zhang ◽  
Ligang Liu

The effects of titanium addition (0 wt.%, 0.2 wt.%, and 0.5 wt.%) on the boron removal from metallurgical-grade silicon during slag refining have been studied. According to the findings, the addition of Ti improved the removal of 92.5 wt.% B with 0.5 wt.% Ti addition compared to 79.4 wt.% B removal without Ti addition. Furthermore, acid leaching reduced excess Ti to 27 ppmw.


2015 ◽  
pp. 150701140137007
Author(s):  
Chenghao Lu ◽  
Liuqing Huang ◽  
Huixian Lai ◽  
Fang Ming ◽  
Wenhui Ma ◽  
...  

2013 ◽  
Vol 49 (3) ◽  
pp. 257-261 ◽  
Author(s):  
B.J. Jia ◽  
J.J. Wu ◽  
W.H. Ma ◽  
B. Yang ◽  
D.C. Liu ◽  
...  

The slag refining for boron removal from metallurgical grade silicon is a promising metallurgical process for producing solar grade silicon. In this paper, FeCl2 molten salt has been used as a new refining agent to remove boron from MG-Si. The effects of refining time and mass ratio of MG-Si to FeCl2 molten salt on boron removal have been investigated in detail. The results showed that boron can be efficiently removed in form of BCl3 and boron concentration in MG-Si was successfully reduced from 22?10-6 to 4?10-6 at 1823K for 2 h with the mass ratio of FeCl2 molten salt to MG-Si for 1.0. The rate equation of boron removal using FeCl2 molten salt was proposed and established in kinetic, which showed a large difference in removal limitation of boron compared with thermodynamics.


Sign in / Sign up

Export Citation Format

Share Document