metallurgical process
Recently Published Documents


TOTAL DOCUMENTS

180
(FIVE YEARS 38)

H-INDEX

17
(FIVE YEARS 2)

Processes ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 154
Author(s):  
Srirat Chuayboon ◽  
Stéphane Abanades

The solar carbo-thermal and methano-thermal reduction of both MgO and ZnO were performed in a flexible solar reactor operated at low pressure through both batch and continuous operations. The pyro-metallurgical process is an attractive sustainable pathway to convert and store concentrated solar energy into high-value metal commodities and fuels. Substituting fossil fuel combustion with solar energy when providing high-temperature process heat is a relevant option for green extractive metallurgy. In this study, a thermodynamic equilibrium analysis was first performed to compare the thermochemical reduction of MgO and ZnO with solid carbon or gaseous methane, and to determine the product distribution as a function of the operating conditions. The carbo-thermal and methano-thermal reduction of the MgO and ZnO volatile oxides was then experimentally assessed and compared using a directly irradiated cavity-type solar reactor under different operating conditions, varying the type of carbon-based reducing agent (either solid carbon or methane), temperature (in the range 765–1167 °C for ZnO and 991–1550 °C for MgO), total pressure (including both reduced 0.10–0.15 bar and atmospheric ~0.90 bar pressures), and processing mode (batch and continuous operations). The carbo-thermal and methano-thermal reduction reactions yielded gaseous metal species (Mg and Zn) which were recovered at the reactor outlet as fine and reactive metal powders. Reducing the total pressure favored the conversion of both MgO and ZnO and increased the yields of Mg and Zn. However, a decrease in the total pressure also promoted CO2 production because of a shortened gas residence time, especially in the case of ZnO reduction, whereas CO2 formation was negligible in the case of MgO reduction, whatever the conditions. Continuous reactant co-feeding (corresponding to the mixture of metal oxide and carbon or methane) was also performed during the solar reactor operation, revealing an increase in both gas production yields and reaction extent while increasing the reactant feeding rate. The type of carbon reducer influenced the reaction extent, since a higher conversion of both MgO and ZnO was reached when using carbon with a highly available specific surface area for the reactions. The continuous solar process yielded high-purity magnesium and zinc content in the solar-produced metallic powders, thus confirming the reliability, flexibility, and robustness of the solar reactor and demonstrating a promising solar metallurgical process for the clean conversion of both metal oxides and concentrated solar light to value-added chemicals.


2021 ◽  
Vol 82 (3) ◽  
pp. 253-255
Author(s):  
Bilyana Kostova ◽  
Boyan Dumanov ◽  
Zhivko Uzunov ◽  
Ventseslav Stoyanov ◽  
Boyka Zlateva

Using X-ray fluorescence and Powder X-ray diffraction analysis, the chemical and phase composition of ancient iron slags and raw iron ore were investigated. The type of raw ore was identified as self-fluxing. The operating furnace temperature was determined in the range 900–1000 °C. The results obtained are of archaeological importance. They will contribute to the chronological specification of the time of realization of the metallurgical process and the type of used furnaces.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Jianhua Wang ◽  
Hongbo Xu ◽  
Li Zhou ◽  
Ximing Liu ◽  
Hongyun Zhao

Purpose This paper aims to investigate the mechanism of Ni particles distribution in the liquid Sn3.5Ag melt under the external static magnetic field. The control steps of Ni particles and the Sn3.5Ag melt metallurgical process were studied. After aging, the microhardness of pure Sn3.5Ag, Sn3.5Ag containing randomly distributed Ni particles and Sn3.5Ag containing columnar Ni particles were compared. Design/methodology/approach Place the sample in a crucible for heating. After the sample melts, place a magnet directly above and below the sample to provide a magnetic field. Sn3.5Ag with the different morphological distribution of Ni particles was obtained by holding for different times under different magnetic field intensities. Finally, pure Sn3.5Ag, Sn3.5Ag with random distributed Ni particles and Sn3.5Ag with columnar Ni particles were aged and their microhardness was tested after aging. Findings The experimental results show that with the increase of magnetic field strength, the time for Ni particle distribution in Sn3.5Ag melt to reach equilibrium is shortened. After aging, the microhardness of Sn3.5Ag containing columnar nickel particles is higher than that of pure Sn3.5Ag and Sn3.5Ag containing randomly distributed nickel particles. A chemical reaction is the control step in the metallurgical process of nickel particles and molten Sn3.5Ag. Originality/value Under the action of the magnetic field, Ni particles in Sn3.5Ag melt will be arranged into columns. With the increase of magnetic field strength, the shorter the time for Ni particles in Sn3.5Ag melt to arrange in a column. With the extension of the service time of the solder joint, if Sn3.5Ag with columnar nickel particles is used as the solder joint material, its microhardness is better than Sn3.5Ag with arbitrarily distributed nickel particles and pure Sn3.5Ag.


2021 ◽  
pp. 105742
Author(s):  
Bin Hu ◽  
Changda Zhang ◽  
Minge Yang ◽  
Qiuxiang Liu ◽  
Mingyu Wang ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2087
Author(s):  
Ya Xiao ◽  
Wenli Zhou ◽  
Linheng Mo ◽  
Jianli Chen ◽  
Meiying Li ◽  
...  

The smelting of zinc is considered as one of the most challenging technologies in ancient civilization. Compared with non-sulfide zinc ores, the smelting of zinc sulfide ores is more complicated since they have to be roasted before smelting. The technological smelting process of the ancient zinc metallurgy technology has been studied and partly reconstructed. However, the roasting technology, including the roasting conditions and involved metallurgical processes, is still unclear. The discovery of the zinc smelting site of Doulingxia dates back to the Qing dynasty (CE 1636–1912), and for the first time provides us with critical archeological evidence to gain an insight into the roasting technology in ancient zinc metallurgy technology. In this paper, the microstructure and mineralogical features of the zinc calcine relics found at the Doulingxia site were characterized by X-ray diffraction (XRD) and scanning electron microscopy coupled with X-ray energy dispersive spectrometer (SEM-EDS). To reconstruct the metallurgical process, the original roasting temperature of the unearthed zinc calcine was estimated by thermogravimetric analysis and differential thermal analysis (TG-DTA), combined with reheating experiments and phase composition analysis as well as microstructural analysis. The simulation experiments were conducted to reconstruct the roasting process. The results indicated that the original roasting temperature of the unearthed zinc calcine should be in a range of 650–850 °C, most probably near 750 °C. As long as the retention time is long enough, all sphalerite can be oxidized when the roasting temperature is above 650 °C. The final roasting products mainly include tiny porous particles of ZnFe2O4, Fe2O3, PbSO4, and ZnO. These findings are helpful to reconstruct the ancient zinc metallurgy technology of zinc sulfide ores.


Author(s):  
V. P. Tsymbal ◽  
I. A. Rybenko ◽  
P. A. Sechenov ◽  
V. I. Kozhemyachenko ◽  
S. N. Kalashnikov ◽  
...  

At the large-scale test facility, manufactured at West-Siberian iron and steel plant from 1992 till 2001 40 series of experiments were accomplished, which enabled to confirm trueness of theoretical and designing solutions of jet-emulsion metallurgical process (JER) and to perfect the design of the facility. Several new low-energy intensive technologies were tested experimentally, including a technology of direct reducing of powdered ores and wastes (sludges, oiled scale) without agglomeration, a technology of obtaining manganese alloys from poor powdered ores, a technology division of titanium-magnetite concentrates into iron and conditional titaniferous slag, and a technology of metal direct reduction with simultaneous production of synthesis-gas. It was shown, that application of JER process is particularly effective for processing of poor powdered ores, as well as powdered iron-containing and coal wastes, by direct reduction in one stage without agglomeration. Possible variants of diversification of technological schemes of production considered for integrated steel plants and machine-building plants, creation of mini-mills of complete cycle (ore‒steel). An example of a layout solution for a technology based on JER process in existing building presented. The level of the development enables to design and together with a machine-building plant to construct on “turn-key” base a pilot facility of industrial scale. The advantages of the process mentioned above enable to get a quick pay-back, particularly for situation of processing of powdered wastes and ores.


Sign in / Sign up

Export Citation Format

Share Document