Revealing of resistant sources in Cicer species to chickpea leaf miner, Liriomyza cicerina (Rondani)

2018 ◽  
Vol 46 (5) ◽  
pp. 635-643 ◽  
Author(s):  
Fatma Oncu Ceylan ◽  
Hatice Sari ◽  
Duygu Sari ◽  
Alper Adak ◽  
Fedai Erler ◽  
...  
2019 ◽  
Vol 53 (5) ◽  
pp. 375-384
Author(s):  
M. Drohvalenko ◽  
A. Mykhailenko ◽  
M. Rekrotchuk ◽  
L. Shpak ◽  
V. Shuba ◽  
...  

Abstract A part of the COI mitochondrial barcoding gene was sequenced from seven species of different taxonomical groups: Ambystoma mexicanum (Amphibia, Ambystomatidae), Darevskia lindholmi, Lacerta agilis exigua (Reptilia, Lacertidae), Erinaceus roumanicus (Mammalia, Erinaceidae), Macrobiotus sp. 1 and 2 (Eutardigrada, Macrobiotidae) and Cameraria ohridella (Insecta, Gracillariidae). The sequences were compared with available sequences from databases and positioned on phylogenetic trees when the taxa had not yet been sequenced. The presence of Mexican axolotls in herpetoculture in Ukraine was confirmed. The partial COI genes of the Crimean rock lizard and an eastern sub-species of the sand lizard were sequenced. We demonstrated the presence of two tardigrade mitochondrial lineages of the Macrobiotus hufelandi group in the same sample from the Zeya Natural Reserve in the Far East: one was nearly identical to the Italian M. macrocalix, and the other one is similar to M. persimilis and M. vladimiri. We also confirmed the presence of the invasive haplotype “A” of the horse chestnut leaf miner in Ukraine, in line with the hypothesized route of invasion from Central Europe.


2017 ◽  
Vol 70 (4) ◽  
Author(s):  
Ram Singh ◽  
Shyam Sunder ◽  
Mangat Ram
Keyword(s):  

2007 ◽  
Vol 1 (2) ◽  
pp. 145-146 ◽  
Author(s):  
R. S. Malhotra ◽  
M. EL Bouhssini ◽  
A. Joubi
Keyword(s):  

2021 ◽  
Vol 31 (1) ◽  
Author(s):  
Alime Bayindir Erol ◽  
Oktay Erdoğan ◽  
İsmail Karaca

Abstract Background In this study, commercial bioinsecticides including entomopathogenic fungi, Beauveria bassiana, Metarhizium anisopliae, and Verticillium lecanii, and Spinetoram active ingredient insecticide were evaluated against the tomato leaf miner, Tuta absoluta (Meyrick, 1917) (Lepidoptera: Gelechiidae) larvae. Main body The active ingredients were prepared at the recommended concentrations under laboratory conditions and applied to the 2nd instar larvae of T. absoluta by spraying with a hand sprayer. On the 1st, 3rd, 5th, and 7th days of the application, evaluations were made by counting survived individuals. The findings showed that the highest mortality rates were detected in the case of Spinetoram with 56, 60, 88, and 100% on all counting days of the experiments, respectively. The highest mortality rate among bioinsecticides was recorded for M. anisopliae, with 87% mortality on the 7th day of application. Short conclusion As a result, Spinetoram was found the most effective insecticide when applied to T. absoluta, followed by M. anisopliae.


Agronomy ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 57
Author(s):  
Nesrine Chrigui ◽  
Duygu Sari ◽  
Hatice Sari ◽  
Tuba Eker ◽  
Mehmet Fatih Cengiz ◽  
...  

The chickpea leafminer, Liriomyza cicerina (Rondani), is one of the most destructive insect pests of cultivated chickpea (Cicer arietinum L.) in the Mediterranean region under field conditions. For sustainable and environmentally friendly chickpea production, efforts have been devoted to managing the leafminer via decreasing the use of insecticides. Breeding of new resistant varieties is not only an efficient and practical approach, but also cost-effective and environmentally sensitive. To improve resistant varieties, breeders need reliable biochemical selection criteria that can be used in breeding programs. The first objective was to investigate the possible introgression of resistance to the leafminer from C. reticulatum Ladiz. (resistant) to C. arietinum (susceptible), then, to estimate inheritance of resistance to the leafminer for efficient breeding strategies, and finally, to study organic acid contents as selection criteria. Recombinant inbred lines (RILs) and their parents were evaluated using a visual scale of 1–9 (1 = free from leafminer damage and 9 = mines in more than 91% of the leaflets and defoliation greater than 31%) in the field under natural infestation conditions after the susceptible parent and check had scores of >7 on the visual scale. Superior RILs were found for resistance to the leafminer, and agro-morphological traits indicating that introgression of resistance to leaf miner from C. reticulatum to C. arietinum could be possible using interspecific crosses. The inheritance pattern of resistance to the leafminer in RILs was shown to be quantitative. Organic acids, including oxalic, malic, quinic, tartaric, citric and succinic acids in RILs grown in the field under insect epidemic conditions and in the greenhouse under non-infested conditions were detected by using high performance liquid chromatography (HPLC). In general, organic acids were found to be higher in resistant RILs than susceptible RILs. Path and correlation coefficients showed that succinic acid exhibited the highest direct effects on resistance to the leafminer. Multivariate analyses, including path, correlation and factor analyses suggested that a high level of succinic acid could be used as a potential biochemical selection criterion for resistance to leafminer in chickpea. Resistant RILs with a high seed yield resembling kabuli chickpea can be grown directly in the target environments under leaf miner infestation conditions.


Life ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 413
Author(s):  
Kevin Piato ◽  
Cristian Subía ◽  
Jimmy Pico ◽  
Darío Calderón ◽  
Lindsey Norgrove ◽  
...  

Coffee agroforestry systems could reconcile agricultural and environmental objectives. While pests and diseases can reduce yield, their interactions with shade and nutrition have been rarely researched, and are particularly lacking in perennial systems. We hypothesized that intermediate shade levels could reduce coffee pests while excess shade could favor fungal diseases. We hypothesized that organic rather than mineral fertilization would better synchronize with nutrient uptake and higher nutrient inputs would be associated with reduced pest and disease damage due to higher plant vigor, yet effects would be less obvious in shaded plots as coffee growth would be light-limited. Using three-year-old trees of Coffea canephora var. Robusta (robusta coffee) in the Ecuadorian Amazon, we compared a full-sun system with four shading methods creating different shade levels: (1) Myroxylon balsamum; (2) Inga edulis; (3) Erythrina spp.; or, (4) Erythrina spp. plus Myroxylon balsamum. Conventional farming at either (1) moderate or (2) intensified input and organic farming at (3) low or (4) intensified input were compared in a split-plot design with shade as the main plot factor and farming practice as the sub-plot factor. The infestation of the following pests and disease incidences were evaluated monthly during the dry season: brown twig beetle (Xylosandrus morigerus), coffee leaf miner (Leucoptera coffeella), coffee berry borer (Hypothenemus hampei), anthracnose disease (Colletotrichum spp.), thread blight (Pellicularia koleroga), and cercospora leaf spot (Cercospora coffeicola). Coffee berry borer and brown twig beetle infestation were both reduced by 7% in intensified organic treatments compared to intensified conventional treatments. Colonization of coffee berry borer holes in coffee berries by the entomopathogenic fungus Beauveria bassiana was also assessed. Brown twig beetle infestation was significantly higher under full sun than under Inga edulis, yet no other shade effects were detected. We demonstrate for the first time how intensified input use might promote pest populations and thus ultimately lead to robusta coffee yield losses.


Sign in / Sign up

Export Citation Format

Share Document