coffee agroforestry
Recently Published Documents


TOTAL DOCUMENTS

126
(FIVE YEARS 63)

H-INDEX

19
(FIVE YEARS 3)

2022 ◽  
Vol 9 (1) ◽  
pp. 13-19
Author(s):  
Dina Ananda Harfia ◽  
Sugeng Prijono

The uneven distribution and intensity of rain cause a shortage and excess of water in dry land farming. It appears that the problem of soil conservation in principle is the regulation of the relationship between rainfall intensity, infiltration capacity, and runoff adjustment. To improve the physical properties of the soil, and the hydrological function of the land use it cannot only be stressed on the coffee plant. Other factors such as soil surface management, such as providing organic matter, covering the soil surface with understory plants, making absorption holes, terraces, waterways and so on, can improve the hydrological function of the land. Rainwater management can be carried out through controlling surface runoff, harvesting rainwater, increasing soil infiltration capacity, managing soil, controlling evaporation and seepage, lining waterways. The use of silt pit parallel is considered quite effective because it is able to produce the lowest surface runoff and sufficient water storage. Silt pit parallel can produce 0.6% of rainfall into surface runoff and also can store water as much as 62.35% of the rainfall that enters the plot. The functions of a silt pit are to increase water infiltration into the soil. On dry land, silt pit functions as a place for harvesting rainwater and surface runoff. Based on the correlation regression test, the amount of surface runoff is closely influenced by the intensity of rain or rainfall.


Author(s):  
Elida Novita ◽  
Miftahul Nur Huda ◽  
Hendra Andiananta Pradana

Coffee plantation areas have the potential to absorb carbon dioxide in the atmosphere to reduce the greenhouse gas (GHG) emissions. Especially if coffee plantations are developed with forest plants in agroforestry area within  forest management patterns. On the other hand, some coffee agroforestry now, are planted with horticultural crops that can reduce carbon sequestration ability to reduce climate change impact. The objectives of the study are to identify the parameters of the abiotic environment and the potential for carbon storage in robusta coffee agroforestry at Argopuro mountains, Bondowoso Regency. Through the calculation of plant biomass and carbon stock, it is potential to approach the amount of carbon uptake in plants to reduce carbon emissions in the atmosphere. Coffee plantation is one area that can increase carbon sequestration in the atmosphere. The results showed that microclimate parameters at robusta coffeeagroforestry at Argopuro mountains in Bondowoso regency i.e. temperature, air humidity, light intensity has average values of 29.2 oC; 54%; and 2166 lux respectively, then an average of soil pH is 6.00. There were some commonly plants founds in robusta coffee plantation i.e mango trees, avocado trees, dadap trees, pine trees, and more banana plants. Total biomass estimation in robusta coffee plantation area is 144,834 tonnes/ha. The identification of carbon stock show that the robusta coffee agroforestry area with ??2000 m2 can contribute to reduce atmospheric carbon emissions by 72.417 tonnes/ha in Argopuro mountains, Maesan District, Bondowoso Regency. Keywords: Argopuro Mountains; Bondowoso; Carbon stock; Coffee agroforestry; Climate Change.


2021 ◽  
Vol 15 (11) ◽  
pp. 505-518
Author(s):  
Kuete Fogang Marcien ◽  
Louise Avana Tientcheu Marie ◽  
Tankou Christopher ◽  
Ndo Eunice

2021 ◽  
Vol 38 (2) ◽  
pp. 89-98
Author(s):  
Jorge Fernando Navia ◽  
Wilmer Libey Delgado-Gualmatan ◽  
Tulio César Lagos-Burbano

Knowing the soil macrofauna and its distribution is important to predict the degradation state of a soil as well as its physical properties and biological components. This research was carried out in coffee ecotopes 220A and 221A in southern Colombia. Two systems were evaluated, Coffea arabica var Castillo and native forest coffee, during two different seasons, winter and summer. Sampling was carried out using the tropical soil biology and fertility program (TSBF) methodology. The statistical treatment was carried out by means of a non-parametric analysis of variance Kruskal-Wall test. The density of orders present per square meter was evaluated, demonstrating that the highest density occurred in the winter season in the ecotope 220A and 221A forest system, with averages of 9.33 orders/ m2 and 9.67 orders/ m2, respectively. The highest number of density of individuals was obtained in winter, in the forest system and coffee in the 220A and 221A ecotopes with averages ranging between 1808 individuals/ m2 and 1368 individuals/ m2, statistically exceeding the number of individuals/ m2 that appeared in summer season. For biomass, the highest contribution was obtained in the winter season, with averages of 186.5 grams/ m2 in the 220A ecotope and 205.74 grams/ m2 for the 221A ecotope, exceeding the biomass that was presented in coffee winter season time, both in the 220A and 221A ecotopes.


Author(s):  
Esther Sebuliba ◽  
J. G. Mwanjalolo Majaliwa ◽  
Prossy Isubikalu ◽  
Nelson Turyahabwe ◽  
Gerald Eilu ◽  
...  

2021 ◽  
Vol 5 ◽  
Author(s):  
Omarsherif Mohammed Jemal ◽  
Daniel Callo-Concha ◽  
Meine van Noordwijk

Agroforestry generally contributes to rural food and nutrition security (FNS). However, specialization on commodity-oriented agroforestry practices or management strategies can weaken local food sourcing when terms of trade fluctuate, as is the case of coffee in Ethiopia. Hence, this study assessed the trade-offs that smallholder farming households in south-western Ethiopia face between growing coffee in agroforestry systems and their food and nutrition security based on home production as well as markets. Data collected from 300 randomly selected households included: (i) attributes of agroforestry practices (AFP) and plants: structure, use type, edibility, marketability, nutritional traits, and (ii) the householders' FNS attributes: food security status, nutritional adequacy, and nutritional status. Data were collected both in food surplus and shortage seasons, during and after coffee harvesting. Within these data, the number of plant species and vegetation stories were significantly correlated with household food access security in both seasons and for all AFP identified, i.e., homegarden, multistorey-coffee-system, and multipurpose-trees-on-farmlands. The number of stories in homegardens and the richness of exotic species in multipurpose-trees-on-farmlands were significantly correlated with the biometric development of children below 5 years old during the shortage season. The richness of “actively-marketed” species in all AFP correlated with the food access security of the household, except in the multistorey-coffee-system, oriented to coffee production. Also, families that cultivate all three AFP showed significantly higher household diversity dietary during the shortage season. We conclude that no single AFP can secure FNS status of the households by itself, but the combination of all three can. Household and individual dietary scores were positively correlated with the AFP diversity-attributes, especially in the shortage season. Thus, the diversity of useful groups of plant species deserves to be promoted for instance by enriching AFP with edible and storable crops needed during the shortage season.


Agronomy ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1531
Author(s):  
Narcisa Urgiles-Gómez ◽  
María Eugenia Avila-Salem ◽  
Paúl Loján ◽  
Max Encalada ◽  
Leslye Hurtado ◽  
...  

Coffee is an important, high-value crop because its roasted beans are used to produce popular beverages that are consumed worldwide. Coffee plantations exist in over 70 countries and constitute the main economic activity of approximately 125 million people. Currently, there is global concern regarding the excessive use of agrochemicals and pesticides in agriculture, including coffee crops. This situation has motivated researchers, administrators, and farmers to seek ecologically friendly alternatives to decrease the use of synthetic fertilizers and pesticides. In the last decades, multiple studies of the rhizosphere, at the chemical, physical and biological levels, have improved our understanding of the importance of beneficial microorganisms to plant health and growth. This review aims to summarize the state of the use of plant growth-promoting microorganisms (PGPM) in coffee production, where the most extensively studied microorganisms are beneficial plant growth-promoting rhizobacteria (PGPR) and arbuscular mycorrhizal fungi (AMF). This review also contains information on PGPM, in regard to plantations at different latitudes, isolation techniques, mass multiplication, formulation methods, and the application of PGPM in nurseries, monoculture, and coffee agroforestry systems. Finally, this review focuses on relevant research performed during the last decade that can help us improve sustainable coffee production.


2021 ◽  
Vol 13 (14) ◽  
pp. 7768
Author(s):  
Sergio Esteban Lozano-Baez ◽  
Yamileth Domínguez-Haydar ◽  
Simone Di Prima ◽  
Miguel Cooper ◽  
Mirko Castellini

Secondary tropical forests and coffee agroforestry systems contain fewer trees than native forests but can positively impact soil hydrological functions, such as water infiltration compared to the pasture land that they replace. However, for both land uses it remains in how far the soil hydraulic characteristics are comparable to that of native forest. Therefore, we investigated the saturated hydraulic conductivity (Ks) and some hydrophysical soil attributes in four land-use types: (i) a shade-grown coffee; (ii) a natural regenerated forest 15 years ago; (iii) a pasture; and (iv) a reference forest, in the municipality of La Jagua de Ibirico, César department, Colombia. We determined historical land use and conducted soil sampling, using the Beerkan method to determine the Ks values. We also measured canopy cover, vegetation height, diameter at breast height and total number of trees in the forest covers. Our results indicate that Ks values were similar for the coffee and the reference forest, reflecting the positive effect of trees on soil hydrological functioning in agroforestry systems. Our results suggest that 15 years of forest regeneration after land abandonment in Sub-Andean Forest, can improve the soil hydraulic attributes. Additionally, soil water repellency was observed for the reference forest soil.


2021 ◽  
Vol 313 ◽  
pp. 107384
Author(s):  
Irena A. Koelemeijer ◽  
Ayco J.M. Tack ◽  
Beyene Zewdie ◽  
Sileshi Nemomissa ◽  
Kristoffer Hylander

Sign in / Sign up

Export Citation Format

Share Document