Hole Quality Measures in Rotary Ultrasonic Drilling of Silicon Dioxide (SiO2): Investigation and Modeling through Designed Experiments

Silicon ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 2587-2600 ◽  
Author(s):  
Ravi Pratap Singh ◽  
Ravinder Kataria ◽  
Sandeep Singhal ◽  
R. K. Garg ◽  
Mohit Tyagi
Materials ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1059 ◽  
Author(s):  
Hisham Alkhalefah

Alumina is an advanced ceramic with applications in dental and medical sciences. Since ceramics are hard and brittle, their conventional machining is expensive, arduous, and time-consuming. As rotary ultrasonic machining is among the most adequate and proficient processing techniques for brittle materials like ceramics. Therefore, in this study, rotary ultrasonic drilling (RUD) has been utilized to drill holes on alumina ceramic (Al2O3). This study investigates the effect of key RUD process variables, namely vibration frequency, vibration amplitude, spindle speed, and feed rate on the dimensional accuracy of the drilled holes. A four-variable three-level central composite design (thirty experiments on three sample plates) is utilized to examine the comparative significance of different RUD process variables. The multi-objective genetic algorithm is employed to determine the optimal parametric conditions. The findings revealed that material removal rates depend on feed rate, while the cylindricity of the holes is mostly controlled by the speed and feed rate of the spindles. The optimal parametric combination attained for drilling quality holes is speed = 4000 rpm, feed rate = 1.5 (mm/min), amplitude = 20 (µm), and frequency = 23 (kHz). The validation tests were also conducted to confirm the quality of drilled holes at the optimized process parameters.


2012 ◽  
Vol 134 (9) ◽  
Author(s):  
Liping Liu ◽  
Bin Lin ◽  
Fengzhou Fang

A novel air bearing workbench used in rotary ultrasonic drilling of advanced ceramics was designed to constantly and sensitively control the cutting force. Compared with traditional feed systems, the novel air bearing workbench features an aerostatic guide and a pneumatic actuator, so that it only overcomes the air damping when the cutting force is balanced. Thus, it can sensitively and constantly control the cutting force for rotary ultrasonic drilling of advanced ceramics. The aerostatic guide, which determines the eccentric bearing capacity and stiffness of the workbench, is the most important part. The forces applied on the aerostatic guide faces were analyzed to calculate the bearing capacity and stiffness of the workbench using varying gas film thicknesses with finite element method (FEM). Based on the result of the analysis, the best gas film thickness of the aerostatic guide was designed to be 30 μm. The real eccentric bearing capacity and stiffness of the workbench were measured. The error between experimental results and the FEM results was within 12%.


Sign in / Sign up

Export Citation Format

Share Document