Research on the residual stress of glass ceramic based on rotary ultrasonic drilling

2016 ◽  
Author(s):  
Lipeng Sun ◽  
Yuzhu Jin ◽  
Jianhua Chen
Materials ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1059 ◽  
Author(s):  
Hisham Alkhalefah

Alumina is an advanced ceramic with applications in dental and medical sciences. Since ceramics are hard and brittle, their conventional machining is expensive, arduous, and time-consuming. As rotary ultrasonic machining is among the most adequate and proficient processing techniques for brittle materials like ceramics. Therefore, in this study, rotary ultrasonic drilling (RUD) has been utilized to drill holes on alumina ceramic (Al2O3). This study investigates the effect of key RUD process variables, namely vibration frequency, vibration amplitude, spindle speed, and feed rate on the dimensional accuracy of the drilled holes. A four-variable three-level central composite design (thirty experiments on three sample plates) is utilized to examine the comparative significance of different RUD process variables. The multi-objective genetic algorithm is employed to determine the optimal parametric conditions. The findings revealed that material removal rates depend on feed rate, while the cylindricity of the holes is mostly controlled by the speed and feed rate of the spindles. The optimal parametric combination attained for drilling quality holes is speed = 4000 rpm, feed rate = 1.5 (mm/min), amplitude = 20 (µm), and frequency = 23 (kHz). The validation tests were also conducted to confirm the quality of drilled holes at the optimized process parameters.


2012 ◽  
Vol 134 (9) ◽  
Author(s):  
Liping Liu ◽  
Bin Lin ◽  
Fengzhou Fang

A novel air bearing workbench used in rotary ultrasonic drilling of advanced ceramics was designed to constantly and sensitively control the cutting force. Compared with traditional feed systems, the novel air bearing workbench features an aerostatic guide and a pneumatic actuator, so that it only overcomes the air damping when the cutting force is balanced. Thus, it can sensitively and constantly control the cutting force for rotary ultrasonic drilling of advanced ceramics. The aerostatic guide, which determines the eccentric bearing capacity and stiffness of the workbench, is the most important part. The forces applied on the aerostatic guide faces were analyzed to calculate the bearing capacity and stiffness of the workbench using varying gas film thicknesses with finite element method (FEM). Based on the result of the analysis, the best gas film thickness of the aerostatic guide was designed to be 30 μm. The real eccentric bearing capacity and stiffness of the workbench were measured. The error between experimental results and the FEM results was within 12%.


Author(s):  
Milan Naď ◽  
Lenka Čičmancová ◽  
Štefan Hajdu

Abstract Rotary ultrasonic machining (RUM) is a hybrid process that combines diamond grinding with ultrasonic machining. It is most suitable to machine hard brittle materials such as ceramics and composites. Due to its excellent machining performance, RUM is very often applied for drilling of hard machinable materials. In the final phase of drilling, the edge deterioration of the drilled hole can occur, which results in a phenomenon called edge chipping. During hole drilling, a change in the thickness of the bottom of the drilled hole occurs. Consequently, the bottom of the hole as a plate structure is exposed to the transfer through the resonance state. This resonance state can be considered as one of the important aspects leading to edge chipping. Effects of changes in the bottom thickness and as well as the fillet radius between the wall and bottom of the borehole on the stress-strain states during RUM are analyzed.


2013 ◽  
Vol 717 ◽  
pp. 215-220
Author(s):  
Li Ming Zhou ◽  
Wei Gong ◽  
En Ze Wang

A novel functionally gradient composite was reported in this article. The composite material are composed of plain low carbon steel Fe360 as a substrate and glass-ceramics containing ZrO2 reinforcing particles as a coating. Based on a mathematical model of the residual stress, the geometric model and finite element analysis models of the Fe360/glass-ceramic gradient coatings were established. The residual stress of the gradient layers was calculated with the commercial software ANSYS 10.0. The results showed that the differences of thermal expansion coefficient and shrinkage rate in each layer resulting from the difference of the volume fraction of ZrO2 in each gradient layer could make the surface layer generate suitable compressive stress. The maximum residual stress presents itself at the interface between the substrate and the gradient coatings. The layer numbers and the thickness of graded coatings have a significant effect on the residual stress.


Sign in / Sign up

Export Citation Format

Share Document