Photodetachment dynamics of negative ion confined in a time-dependent quantum well

Author(s):  
Tong Shi ◽  
De-Hua Wang ◽  
Xin-Yue Sun
2017 ◽  
Vol 95 (5) ◽  
pp. 507-513 ◽  
Author(s):  
De-hua Wang

This paper addresses the photodetachment dynamics of a negative ion in a time-dependent electric field based on the semiclassical open-orbit theory. The photodetached electron probability density in a real time domain is studied in a gradient electric field for the first time. It is found that because of the influence of the gradient electric field, two or more electron trajectories can arrive at a given point on the detector, and the interference effect between these electron trajectories causes oscillatory structures in the electron probability density. Our calculation results suggest that when the external electric field changes very slowly with time, only two electron trajectories can arrive at a given point on the detector and the electron probability density exhibits a regular two-term oscillatory pattern. However, when the electric field changes quickly with time, four electron trajectories can reach the detector, which makes the oscillatory structures in the electron probability density become much more complicated. In addition, the electric field strength, photon energy, and the position of the detector can affect the electron probability density of this system sensitively. Our study provides a clear and intuitive picture for the photodetachment dynamics of the negative ion in the external electric field from a time-dependent viewpoint and may guide the future experimental researches on the photodetachment microscopy of negative ions in the time-dependent electric field.


1985 ◽  
Vol 58 (6) ◽  
pp. 2230-2235 ◽  
Author(s):  
D. D. Coon ◽  
H. C. Liu
Keyword(s):  

2012 ◽  
Vol 303 (6) ◽  
pp. E683-E694 ◽  
Author(s):  
Zhi-Jun Ou ◽  
Li Li ◽  
Xiao-Long Liao ◽  
Yi-Ming Wang ◽  
Xiao-Xia Hu ◽  
...  

An apolipoprotein A-I mimetic peptide, D-4F, has been shown to improve vasodilation and inhibit atherosclerosis in hypercholesterolemic low-density lipoprotein receptor-null (LDLr−/−) mice. To study the metabolic variations of D-4F ininhibiting atherosclerosis, metabonomics, a novel system biological strategy to investigate the pathogenesis, was developed. Female LDLr−/− mice were fed a Western diet and injected with or without D-4F intraperitoneally. Atherosclerotic lesion formation was measured, whereas plasma metabolic profiling was obtained on the basis of ultra-high-performance liquid chromatography in tandem with time-of-flight mass spectrometry operating in both positive and negative ion modes. Data were processed by multivariate statistical analysis to graphically demonstrate metabolic changes. The partial least-squares discriminate analysis model was validated with cross-validation and permutation tests to ensure the model's reliability. D-4F significantly inhibited the formation of atherosclerosis in a time-dependent manner. The metabolic profiling was altered dramatically in hypercholesterolemic LDLr−/− mice, and a significant metabolic profiling change in response to D-4F treatment was observed in both positive and negative ion modes. Thirty-six significantly changed metabolites were identified as potential biomarkers. A series of phospholipid metabolites, including lysophosphatidylcholine (LysoPC), lysophosphatidylethanolamine (LysoPE), phosphatidylcholine (PC), phatidylethanolamine (PE), sphingomyelin (SM), and diacylglycerol (DG), particularly the long-chain LysoPC, was elevated dramatically in hypercholesterolemic LDLr−/− mice but reduced by D-4F in a time-dependent manner. Quantitative analysis of LysoPC, LysoPE, PC, and DG using HPLC was chosen to validate the variation of these potential biomarkers, and the results were consistent with the metabonomics findings. Our findings demonstrated that D-4F may inhibit atherosclerosis by regulating phospholipid metabolites specifically by decreasing plasma long-chain LysoPC.


Sign in / Sign up

Export Citation Format

Share Document