Accurate breast lesion segmentation by exploiting spatio-temporal information with deep recurrent and convolutional network

Author(s):  
Mingjian Chen ◽  
Hao Zheng ◽  
Changsheng Lu ◽  
Enmei Tu ◽  
Jie Yang ◽  
...  
2021 ◽  
Vol 10 (3) ◽  
pp. 166
Author(s):  
Hartmut Müller ◽  
Marije Louwsma

The Covid-19 pandemic put a heavy burden on member states in the European Union. To govern the pandemic, having access to reliable geo-information is key for monitoring the spatial distribution of the outbreak over time. This study aims to analyze the role of spatio-temporal information in governing the pandemic in the European Union and its member states. The European Nomenclature of Territorial Units for Statistics (NUTS) system and selected national dashboards from member states were assessed to analyze which spatio-temporal information was used, how the information was visualized and whether this changed over the course of the pandemic. Initially, member states focused on their own jurisdiction by creating national dashboards to monitor the pandemic. Information between member states was not aligned. Producing reliable data and timeliness reporting was problematic, just like selecting indictors to monitor the spatial distribution and intensity of the outbreak. Over the course of the pandemic, with more knowledge about the virus and its characteristics, interventions of member states to govern the outbreak were better aligned at the European level. However, further integration and alignment of public health data, statistical data and spatio-temporal data could provide even better information for governments and actors involved in managing the outbreak, both at national and supra-national level. The Infrastructure for Spatial Information in Europe (INSPIRE) initiative and the NUTS system provide a framework to guide future integration and extension of existing systems.


2021 ◽  
pp. 1-1
Author(s):  
Quan-Dung Pham ◽  
Xuan Truong Nguyen ◽  
Khac-Thai Nguyen ◽  
Hyun Kim ◽  
Hyuk-Jae Lee

Author(s):  
Sophia Bano ◽  
Francisco Vasconcelos ◽  
Emmanuel Vander Poorten ◽  
Tom Vercauteren ◽  
Sebastien Ourselin ◽  
...  

Abstract Purpose Fetoscopic laser photocoagulation is a minimally invasive surgery for the treatment of twin-to-twin transfusion syndrome (TTTS). By using a lens/fibre-optic scope, inserted into the amniotic cavity, the abnormal placental vascular anastomoses are identified and ablated to regulate blood flow to both fetuses. Limited field-of-view, occlusions due to fetus presence and low visibility make it difficult to identify all vascular anastomoses. Automatic computer-assisted techniques may provide better understanding of the anatomical structure during surgery for risk-free laser photocoagulation and may facilitate in improving mosaics from fetoscopic videos. Methods We propose FetNet, a combined convolutional neural network (CNN) and long short-term memory (LSTM) recurrent neural network architecture for the spatio-temporal identification of fetoscopic events. We adapt an existing CNN architecture for spatial feature extraction and integrated it with the LSTM network for end-to-end spatio-temporal inference. We introduce differential learning rates during the model training to effectively utilising the pre-trained CNN weights. This may support computer-assisted interventions (CAI) during fetoscopic laser photocoagulation. Results We perform quantitative evaluation of our method using 7 in vivo fetoscopic videos captured from different human TTTS cases. The total duration of these videos was 5551 s (138,780 frames). To test the robustness of the proposed approach, we perform 7-fold cross-validation where each video is treated as a hold-out or test set and training is performed using the remaining videos. Conclusion FetNet achieved superior performance compared to the existing CNN-based methods and provided improved inference because of the spatio-temporal information modelling. Online testing of FetNet, using a Tesla V100-DGXS-32GB GPU, achieved a frame rate of 114 fps. These results show that our method could potentially provide a real-time solution for CAI and automating occlusion and photocoagulation identification during fetoscopic procedures.


Author(s):  
Yinong Zhang ◽  
Shanshan Guan ◽  
Cheng Xu ◽  
Hongzhe Liu

In the era of intelligent education, human behavior recognition based on computer vision is an important branch of pattern recognition. Human behavior recognition is a basic technology in the fields of intelligent monitoring and human-computer interaction in education. The dynamic changes of human skeleton provide important information for the recognition of educational behavior. Traditional methods usually use manual information to label or traverse rules only, resulting in limited representation capabilities and poor generalization performance of the model. In this paper, a kind of dynamic skeleton model with residual is adopted—a spatio-temporal graph convolutional network based on residual connections, which not only overcomes the limitations of previous methods, but also can learn the spatio-temporal model from the skeleton data. In the big bone NTU-RGB + D dataset, the network model not only improved the representation ability of human behavior characteristics, but also improved the generalization ability, and achieved better recognition effect than the existing model. In addition, this paper also compares the results of behavior recognition on subsets of different joint points, and finds that spatial structure division have better effects.


Sign in / Sign up

Export Citation Format

Share Document