A novel fuzzy association rule for efficient data mining of ubiquitous real-time data

2020 ◽  
Vol 11 (11) ◽  
pp. 4753-4763 ◽  
Author(s):  
S. Nagaraj ◽  
E. Mohanraj
2014 ◽  
Vol 599-601 ◽  
pp. 1487-1490 ◽  
Author(s):  
Li Kun Zheng ◽  
Kun Feng ◽  
Xiao Qing Xiao ◽  
Wei Qiao Song

This paper mainly discusses the application of the mass real-time data mining technology in equipment safety state evaluation in the power plant and the realization of the equipment comprehensive quantitative assessment and early warning of potential failure by mining analysis and modeling massive amounts of real-time data the power equipment. In addition to the foundational technology introduced in this paper, the technology is also verified by the application case in the power supply side remote diagnosis center of Guangdong electric institute.


2019 ◽  
Vol 31 (1) ◽  
pp. 265-290 ◽  
Author(s):  
Ganjar Alfian ◽  
Muhammad Fazal Ijaz ◽  
Muhammad Syafrudin ◽  
M. Alex Syaekhoni ◽  
Norma Latif Fitriyani ◽  
...  

PurposeThe purpose of this paper is to propose customer behavior analysis based on real-time data processing and association rule for digital signage-based online store (DSOS). The real-time data processing based on big data technology (such as NoSQL MongoDB and Apache Kafka) is utilized to handle the vast amount of customer behavior data.Design/methodology/approachIn order to extract customer behavior patterns, customers’ browsing history and transactional data from digital signage (DS) could be used as the input for decision making. First, the authors developed a DSOS and installed it in different locations, so that customers could have the experience of browsing and buying a product. Second, the real-time data processing system gathered customers’ browsing history and transaction data as it occurred. In addition, the authors utilized the association rule to extract useful information from customer behavior, so it may be used by the managers to efficiently enhance the service quality.FindingsFirst, as the number of customers and DS increases, the proposed system was capable of processing a gigantic amount of input data conveniently. Second, the data set showed that as the number of visit and shopping duration increases, the chance of products being purchased also increased. Third, by combining purchasing and browsing data from customers, the association rules from the frequent transaction pattern were achieved. Thus, the products will have a high possibility to be purchased if they are used as recommendations.Research limitations/implicationsThis research empirically supports the theory of association rule that frequent patterns, correlations or causal relationship found in various kinds of databases. The scope of the present study is limited to DSOS, although the findings can be interpreted and generalized in a global business scenario.Practical implicationsThe proposed system is expected to help management in taking decisions such as improving the layout of the DS and providing better product suggestions to the customer.Social implicationsThe proposed system may be utilized to promote green products to the customer, having a positive impact on sustainability.Originality/valueThe key novelty of the present study lies in system development based on big data technology to handle the enormous amounts of data as well as analyzing the customer behavior in real time in the DSOS. The real-time data processing based on big data technology (such as NoSQL MongoDB and Apache Kafka) is used to handle the vast amount of customer behavior data. In addition, the present study proposed association rule to extract useful information from customer behavior. These results can be used for promotion as well as relevant product recommendations to DSOS customers. Besides in today’s changing retail environment, analyzing the customer behavior in real time in DSOS helps to attract and retain customers more efficiently and effectively, and retailers can get a competitive advantage over their competitors.


Author(s):  
B. Thuraisingham ◽  
L. Khan ◽  
C. Clifton ◽  
J. Maurer ◽  
M. Ceruti

Author(s):  
Wenke Lee ◽  
S.J. Stolfo ◽  
P.K. Chan ◽  
E. Eskin ◽  
Wei Fan ◽  
...  

2021 ◽  
Vol 13 (0203) ◽  
pp. 78-81
Author(s):  
Ashish P. Joshi ◽  
Biraj V. Patel

The model and pattern for real time data mining have an important role for decision making. The meaningful real time data mining is basically depends on the quality of data while row or rough data available at warehouse. The data available at warehouse can be in any format, it may huge or it may unstructured. These kinds of data require some process to enhance the efficiency of data analysis. The process to make it ready to use is called data preprocessing. There can be many activities for data preprocessing such as data transformation, data cleaning, data integration, data optimization and data conversion which are use to converting the rough data to quality data. The data preprocessing techniques are the vital step for the data mining. The analyzed result will be good as far as data quality is good. This paper is about the different data preprocessing techniques which can be use for preparing the quality data for the data analysis for the available rough data.


2020 ◽  
Vol 16 (5) ◽  
pp. 155014772091706 ◽  
Author(s):  
Chunling Li ◽  
Ben Niu

With the wide application of Internet of things technology and era of large data in agriculture, smart agricultural design based on Internet of things technology can efficiently realize the function of real-time data communication and information processing and improve the development of smart agriculture. In the process of analyzing and processing a large amount of planting and environmental data, how to extract effective information from these massive agricultural data, that is, how to analyze and mine the needs of these large amounts of data, is a pressing problem to be solved. According to the needs of agricultural owners, this article studies and optimizes the data storage, data processing, and data mining of large data generated in the agricultural production process, and it uses the k-means algorithm based on the maximum distance to study the data mining. The crop growth curve is simulated and compared with improved K-means algorithm and the original k-means algorithm in the experimental analysis. The experimental results show that the improved K-means clustering method has an average reduction of 0.23 s in total time and an average increase of 7.67% in the F metric value. The algorithm in this article can realize the functions of real-time data communication and information processing more efficiently, and has a significant role in promoting agricultural informatization and improving the level of agricultural modernization.


Sign in / Sign up

Export Citation Format

Share Document