An optimal artificial neural network based big data application for heart disease diagnosis and classification model

Author(s):  
R. Thanga Selvi ◽  
I. Muthulakshmi
2016 ◽  
Vol 26 (04) ◽  
pp. 1750061 ◽  
Author(s):  
G. Thippa Reddy ◽  
Neelu Khare

The objective of the work is to predict heart disease using computing techniques like an oppositional firefly with BAT and rule-based fuzzy logic (RBFL). The system would help the doctors to automate heart disease diagnosis and to enhance the medical care. In this paper, a hybrid OFBAT-RBFL heart disease diagnosis system is designed. Here, at first, the relevant features are selected from the dataset using locality preserving projection (LPP) algorithm which helps the diagnosis system to develop a classification model using the fuzzy logic system. After that, the rules for the fuzzy system are created from the sample data. Among the entire rules, the important and relevant group of rules are selected using OFBAT algorithm. Here, the opposition based learning (OBL) is hybrid to the firefly with BAT algorithm to improve the performance of the FAT algorithm while optimizing the rules of the fuzzy logic system. Next, the fuzzy system is designed with the help of designed fuzzy rules and membership functions so that classification can be carried out within the fuzzy system designed. At last, the experimentation is performed by means of publicly available UCI datasets, i.e., Cleveland, Hungarian and Switzerland datasets. The experimentation result proves that the RBFL prediction algorithm outperformed the existing approach by attaining the accuracy of 78%.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Jamal Salahaldeen Majeed Alneamy ◽  
Rahma Abdulwahid Hameed Alnaish

Among the various diseases that threaten human life is heart disease. This disease is considered to be one of the leading causes of death in the world. Actually, the medical diagnosis of heart disease is a complex task and must be made in an accurate manner. Therefore, a software has been developed based on advanced computer technologies to assist doctors in the diagnostic process. This paper intends to use the hybrid teaching learning based optimization (TLBO) algorithm and fuzzy wavelet neural network (FWNN) for heart disease diagnosis. The TLBO algorithm is applied to enhance performance of the FWNN. The hybrid TLBO algorithm with FWNN is used to classify the Cleveland heart disease dataset obtained from the University of California at Irvine (UCI) machine learning repository. The performance of the proposed method (TLBO_FWNN) is estimated using K-fold cross validation based on mean square error (MSE), classification accuracy, and the execution time. The experimental results show that TLBO_FWNN has an effective performance for diagnosing heart disease with 90.29% accuracy and superior performance compared to other methods in the literature.


Sign in / Sign up

Export Citation Format

Share Document