Heart Disease Diagnosis Using Diverse Neural Network Categories

Author(s):  
Mostafa Ibrahem Hassan ◽  
Ahmed Hamza Osman ◽  
Eltahir Mohamed Hussein
2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Jamal Salahaldeen Majeed Alneamy ◽  
Rahma Abdulwahid Hameed Alnaish

Among the various diseases that threaten human life is heart disease. This disease is considered to be one of the leading causes of death in the world. Actually, the medical diagnosis of heart disease is a complex task and must be made in an accurate manner. Therefore, a software has been developed based on advanced computer technologies to assist doctors in the diagnostic process. This paper intends to use the hybrid teaching learning based optimization (TLBO) algorithm and fuzzy wavelet neural network (FWNN) for heart disease diagnosis. The TLBO algorithm is applied to enhance performance of the FWNN. The hybrid TLBO algorithm with FWNN is used to classify the Cleveland heart disease dataset obtained from the University of California at Irvine (UCI) machine learning repository. The performance of the proposed method (TLBO_FWNN) is estimated using K-fold cross validation based on mean square error (MSE), classification accuracy, and the execution time. The experimental results show that TLBO_FWNN has an effective performance for diagnosing heart disease with 90.29% accuracy and superior performance compared to other methods in the literature.


The heart disease diagnosis system is proposed inthis study. This kind of diagnosis systems enhance medical careand helps doctors. In this paper, heart disease dataset fromkaggle web site is used. Neural Network is examined andanalyzed for different structures as an optimizer, loss function,and batch size. The simulation results show that the proposedneural network model has 90,16% accuracy.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Ashir Javeed ◽  
Sanam Shahla Rizvi ◽  
Shijie Zhou ◽  
Rabia Riaz ◽  
Shafqat Ullah Khan ◽  
...  

Diagnosis of heart disease is a difficult job, and researchers have designed various intelligent diagnostic systems for improved heart disease diagnosis. However, low heart disease prediction accuracy is still a problem in these systems. For better heart risk prediction accuracy, we propose a feature selection method that uses a floating window with adaptive size for feature elimination (FWAFE). After the feature elimination, two kinds of classification frameworks are utilized, i.e., artificial neural network (ANN) and deep neural network (DNN). Thus, two types of hybrid diagnostic systems are proposed in this paper, i.e., FWAFE-ANN and FWAFE-DNN. Experiments are performed to assess the effectiveness of the proposed methods on a dataset collected from Cleveland online heart disease database. The strength of the proposed methods is appraised against accuracy, sensitivity, specificity, Matthews correlation coefficient (MCC), and receiver operating characteristics (ROC) curve. Experimental outcomes confirm that the proposed models outperformed eighteen other proposed methods in the past, which attained accuracies in the range of 50.00–91.83%. Moreover, the performance of the proposed models is impressive as compared with that of the other state-of-the-art machine learning techniques for heart disease diagnosis. Furthermore, the proposed systems can help the physicians to make accurate decisions while diagnosing heart disease.


Sign in / Sign up

Export Citation Format

Share Document