Geometric aggregation operators with interval-valued Pythagorean trapezoidal fuzzy numbers based on Einstein operations and their application in group decision making

2019 ◽  
Vol 10 (10) ◽  
pp. 2867-2886 ◽  
Author(s):  
M. Shakeel ◽  
S. Abdullah ◽  
M. Shahzad ◽  
Nasir Siddiqui
2015 ◽  
Vol 14 (4) ◽  
pp. 11-28 ◽  
Author(s):  
Wei Lin ◽  
Guangle Yan ◽  
Yuwen Shi

Abstract In this paper we investigate the dynamic multi-attribute group decision making problems, in which all the attribute values are provided by multiple decision makers at different periods. In order to increase the level of overall satisfaction for the final decision and deal with uncertainty, the attribute values are enhanced with generalized interval-valued trapezoidal fuzzy numbers to cope with the vagueness and indeterminacy. We first define the Dynamic Generalized Interval-valued Trapezoidal Fuzzy Numbers Weighted Geometric Aggregation (DGITFNWGA) operator and give an approach to determine the weights of periods, using the probability density function of Gamma distribution, and then a dynamic multi-attribute group decision making method is developed. The method proposed employs the Generalized Interval-valued Trapezoidal Fuzzy Numbers Hybrid Geometric Aggregation (GITFNHGA) operator to aggregate all individual decision information into the collective attribute values corresponding to each alternative at the same time period, and then utilizes the DGITFNWGA operator to aggregate the collective attribute values at different periods into the overall attribute values corresponding to each alternative and obtains the alternatives ranking, by which the optimal alternative can be determined. Finally, an illustrative example is given to verify the approach developed.


Information ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 46 ◽  
Author(s):  
Yuan Rong ◽  
Zheng Pei ◽  
Yi Liu

Linguistic Pythagorean fuzzy (LPF) set is an efficacious technique to comprehensively represent uncertain assessment information by combining the Pythagorean fuzzy numbers and linguistic variables. In this paper, we define several novel essential operations of LPF numbers based upon Einstein operations and discuss several relations between these operations. For solving the LPF numbers fusion problem, several LPF aggregation operators, including LPF Einstein weighted averaging (LPFEWA) operator, LPF Einstein weighted geometric (LPFEWG) operator and LPF Einstein hybrid operator, are propounded; the prominent characteristics of these operators are investigated as well. Furthermore, a multi-attribute group decision making (MAGDM) approach is presented on the basis of the developed operators under an LPF environment. Ultimately, two application cases are utilized to demonstrate the practicality and feasibility of the developed decision approach and the comparison analysis is provided to manifest the merits of it.


Sign in / Sign up

Export Citation Format

Share Document