The numerical study of wave-induced pore water pressure response in highly permeable seabed

2012 ◽  
Vol 31 (6) ◽  
pp. 46-55 ◽  
Author(s):  
Changbo Jiang ◽  
Yongzhou Cheng ◽  
Liuhong Chang ◽  
Bo Xia
1998 ◽  
Vol 35 (6) ◽  
pp. 926-937 ◽  
Author(s):  
Tai T Wong ◽  
Delwyn G Fredlund ◽  
John Krahn

This paper first describes the numerical implementation of the coupled formulation for the theory of consolidation of unsaturated soils. The developed computer code is verified using the Mandel-Cryer problem and then is applied to the solution of coupled multidimensional consolidation problems. Using a parametric study, it is demonstrated that, in unsaturated soils, the Mandel-Cryer effect is suppressed and the consolidation process in unsaturated soils is affected significantly by the shape of the soil-water characteristic curve. Finally, the developed model is used to analyze the consolidation of an unsaturated-saturated soil column. Analysis results indicate that the classical "undrained" pore-water pressure response to an externally applied load only occurs in the saturated zone while the pore-water pressure response is subdued in the unsaturated zone. This paper also shows a method of deriving one of the two additional material parameters required for the analysis of unsaturated soils from laboratory test results.Key words: coupled consolidation, unsaturated soils, Mandel-Cryer effect, soil-water characteristic curve.


2016 ◽  
Vol 24 (7) ◽  
pp. 1821-1833 ◽  
Author(s):  
Nuraddeen Muhammad Babangida ◽  
Muhammad Raza Ul Mustafa ◽  
Khamaruzaman Wan Yusuf ◽  
Mohamed Hasnain Isa

1989 ◽  
Vol 111 (1) ◽  
pp. 1-11 ◽  
Author(s):  
W. G. McDougal ◽  
Y. T. Tsai ◽  
P. L-F. Liu ◽  
E. C. Clukey

2014 ◽  
Vol 56 (2) ◽  
pp. 1450008-1-1450008-21 ◽  
Author(s):  
Tomoaki Nakamura ◽  
Yuta Nezasa ◽  
Yong-Hwan Cho ◽  
Ryo Ishihara ◽  
Norimi Mizutani

2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
Chi Zhang ◽  
Qingyang Zhang ◽  
Zaitian Wu ◽  
Jisheng Zhang ◽  
Titi Sui ◽  
...  

Effects of the embedded monopile foundation on the local distributions of pore water pressure, soil stresses, and liquefaction are investigated in this study using a three-dimensional integrated numerical model. The model is based on a Reynolds-Averaged Navier-Stokes wave module and a fully dynamic poroelastic seabed module and has been validated with the analytical solution and experimental data. Results show that, compared to the situation without an embedded foundation, the embedded monopile foundation increases and decreases the maximum pore water pressure in the seabed around and below the foundation, respectively. The embedded monopile foundation also significantly modifies the distributions of the maximum effective soil stress around the foundation and causes a local concentration of soil stress below the two lower corners of foundation. A parametric study reveals that the effects of embedded monopile foundation on pore water pressure increase as the degrees of saturation and soil permeability decrease. The embedded monopile foundation tends to decrease the liquefaction depth around the structure, and this effect is relatively more obvious for greater degrees of saturation, greater soil permeabilities, and smaller wave heights.


2019 ◽  
Vol 154 ◽  
pp. 103577 ◽  
Author(s):  
Xiao-li Liu ◽  
Hao-nan Cui ◽  
Dong-sheng Jeng ◽  
Hong-yi Zhao

Sign in / Sign up

Export Citation Format

Share Document