Investigations into the Holocene geology of the Dead Sea basin

2018 ◽  
Vol 34 (4) ◽  
pp. 1415-1442 ◽  
Author(s):  
Josef Charrach
2006 ◽  
Vol 55 (3) ◽  
pp. 129-139 ◽  
Author(s):  
Avihu Ginzburg ◽  
Moshe Reshef ◽  
Zvi Ben-Avraham ◽  
Uri Schattner

2004 ◽  
Vol 141 (5) ◽  
pp. 565-572 ◽  
Author(s):  
YUVAL BARTOV ◽  
AMIR SAGY

A newly discovered active small-scale pull-apart (Mor structure), located in the western part of the Dead Sea Basin, shows recent basin-parallel extension and strike-slip faulting, and offers a rare view of pull-apart internal structure. The Mor structure is bounded by N–S-trending strike-slip faults, and cross-cut by low-angle, E–W-trending normal faults. The geometry of this pull-apart suggests that displacement between the two stepped N–S strike-slip faults of the Mor structure is transferred by the extension associated with the normal faults. The continuing deformation in this structure is evident by the observation of at least three deformation episodes between 50 ka and present. The calculated sinistral slip-rate is 3.5 mm/yr over the last 30 000 years. This slip rate indicates that the Mor structure overlies the currently most active strike-slip fault within the western border of the Dead Sea pull-apart. The Mor structure is an example of a small pull-apart basin developed within a larger pull-apart. This type of hierarchy in pull-apart structures is an indication for their ongoing evolution.


2019 ◽  
Vol 32 (4) ◽  
pp. 636-651 ◽  
Author(s):  
Lisa Coianiz ◽  
Uri Schattner ◽  
Guy Lang ◽  
Zvi Ben‐Avraham ◽  
Michael Lazar

Author(s):  
Yin Lu ◽  
Jasper Moernaut ◽  
Revital Bookman ◽  
Nicolas Waldmann ◽  
Nadav Wetzler ◽  
...  

Radiocarbon ◽  
2020 ◽  
Vol 62 (5) ◽  
pp. 1453-1473
Author(s):  
Nurit Weber ◽  
Boaz Lazar ◽  
Ofra Stern ◽  
George Burr ◽  
Ittai Gavrieli ◽  
...  

ABSTRACTThe sources and fate of radiocarbon (14C) in the Dead Sea hypersaline solution are evaluated with 14C measurements in organic debris and primary aragonite collected from exposures of the Holocene Ze’elim Formation. The reservoir age (RA) is defined as the difference between the radiocarbon age of the aragonite at time of its precipitation (representing lakeʼs dissolved inorganic carbon [DIC]) and the age of contemporaneous organic debris (representing atmospheric radiocarbon). Evaluation of the data for the past 6000 yr from Dead Sea sediments reveal that the lakeʼs RA decreased from 2890 yr at 6 cal kyr BP to 2300 yr at present. The RA lies at ~2400 yr during the past 3000 yr, when the lake was characterized by continuous deposition of primary aragonite, which implies a continuous supply of freshwater-bicarbonate into the lake. This process reflects the overall stability of the hydrological-climate conditions in the lakeʼs watershed during the late Holocene where bicarbonate originated from dissolution of the surface cover in the watershed that was transported to the Dead Sea by the freshwater runoff. An excellent correlation (R2=0.98) exists between aragonite ages and contemporaneous organic debris, allowing the estimation of ages of various primary deposits where organic debris are not available.


Sign in / Sign up

Export Citation Format

Share Document