local earthquake
Recently Published Documents


TOTAL DOCUMENTS

325
(FIVE YEARS 68)

H-INDEX

40
(FIVE YEARS 3)

2022 ◽  
Author(s):  
B.R. Julian ◽  
G.R. Foulger

ABSTRACT Seismic tomography methods that use waves originating outside the volume being studied are subject to bias caused by unknown structure outside this volume. The bias is of the same mathematical order and similar magnitude as the local-structure effects being studied; failure to account for it can significantly corrupt derived structural models. This bias can be eliminated by adding to the inverse problem three unknown parameters specifying the direction and time for each incident wave, a procedure analogous to solving for event locations in local-earthquake and whole-mantle tomography. The forward problem is particularly simple: The first-order change in the arrival time at an observation point resulting from a perturbation to the incident-wave direction and time equals the change in the time of the perturbed incident wave at the point where the unperturbed ray entered the study volume. This consequence of Fermat’s principle apparently has not previously been recognized. Published teleseismic tomography models probably contain significant artifacts and need to be recomputed using the more complete theory.


Author(s):  
Trine Dahl-Jensen ◽  
Lif Lund Jacobsen ◽  
Ann-Sophie Graulund Sølund ◽  
Tine B. Larsen ◽  
Peter H. Voss

Abstract The paper seismograms from 100 years of observations in Denmark and Greenland has since October 2021 been made available through the Danish National Archives. Five case stories illustrate the quality and variation of the seismograms, and the historical context of operation of the stations. (1) The earliest recorded earthquake in the archive is recorded at GDH station in Greenland, where the 1907 Mw 7.2 earthquake in Tajikistan is recorded on smoked paper. (2) The first Danish earthquake is a local event close to Copenhagen in 1930. (3) We have illustrated the 50 megaton nuclear explosion in Novaya Zemlya in 1961—the largest nuclear test explosion ever. (4) The M 9.2 earthquake in Alaska in 1964 recorded on several instruments at COP. (5) A local earthquake in northeast Greenland recorded both on paper on World-Wide Standard Seismographic Network instruments and digitally on a modern broadband instrument.


Author(s):  
Vivien He

Abstract Earthquakes are a major global risk. The current earthquake early warning systems based on public seismic stations face challenges such as high cost, low density, high latency, no alert zone, and difficulty in predicting ground motions at the location of the user. This article pursues an alternative consumer-based approach. An Internet of Things consumer device, called a “Qube,” was built for a cost below $100 and is about the size of a Rubik’s cube. The Qube successfully detected earthquakes and issued earthquake warnings through sounding the onboard alarm for on-site warning and sending text messages to local subscribers for regional warning. The Qube is highly sensitive. During nine months of testing from September 2020 to May 2021, it detected all earthquakes over M 3.0 magnitude around Los Angeles, as well as nearby earthquakes down to M 2.3. The Qube uses a geophone for ground-motion velocity sensing and captures earthquake waveforms consistent with a nearby broadband seismometer in the Southern California Seismic Network. By analyzing data of the earthquakes detected by the Qube, an empirical logarithmic formula that is used to estimate local earthquake magnitude based on detected ground-motion amplitude in digital counts was developed. Although the Qube’s response in digital counts to ground-motion velocity in μm/s has not been determined, the empirical formula between Qube’s output and local earthquake magnitude suggests the Qube’s consistency in ground-motion measurement. The Qube has Wi-Fi connectivity and is controllable via a smartphone or computer. The combination of low cost, high sensitivity, and integrated alarm function of the Qube is intended to enable a consumer-based approach with the potential for mass adoption and use in dense networks, creating new opportunities for seismic network, earthquake warning, and educational applications.


Author(s):  
S. M. Ariful Islam ◽  
Christine A. Powell ◽  
Martin C. Chapman

Abstract Three-dimensional P- and S-wave velocity (VP and VS) models are determined for the crust containing the main aftershock cluster of the 2011 Mineral, Virginia, earthquake using local earthquake tomography. The inversion uses a total of 5125 arrivals (2465 P- and 2660 S-wave arrivals) for 324 aftershocks recorded by 12 stations. The inversion volume (22 × 20 × 16 km) is completely contained within the Piedmont Chopawamsic metavolcanic terrane. The models are well resolved in the central portion of the inversion volume in the depth range 1–5 km; good resolution does not extend to the hypocenter depth of the mainshock. Most aftershocks are located within a northeast-trending, southeast-dipping region containing negative VP anomalies, positive VS anomalies, and VP/VS ratios as low as 1.53. These velocity results strongly argue for the presence of quartz-rich rocks, which we attribute to either the presence of a giant quartz vein system or metamorphosed orthoquarzite sandstones originally deposited on the Laurentian passive margin and subsequently incorporated into the Chopawamsic thrust sheets during island arc collision in the Taconic orogeny.


2021 ◽  
Vol 420 ◽  
pp. 107392
Author(s):  
Viktoria Komzeleva ◽  
Ivan Koulakov ◽  
Sergey Nikolaevich Rychagov ◽  
Evgeny Ilych Gordeev ◽  
Ilyas Abkadyrov ◽  
...  

Author(s):  
Maximilien Lehujeur ◽  
Sébastien Chevrot ◽  
Antonio Villaseñor ◽  
Emmanuel Masini ◽  
Nicolas Saspiturry ◽  
...  

We present a 3-D shear wave velocity model of the Mauleon and Arzacq basins from the surface down to 10~km depth. This model is obtained by inverting phase velocity maps for periods from 2 to 9~s measured on coherent surface wavefronts extracted from ambient seismic noise by matched filtering. This new model, which is found in good agreement with local earthquake tomography, reveals the architecture of the Mauleon and Arzacq basins which were poorly imaged by conventional reflection seismic data. Combining these new tomographic images with surface and subsurface geological information allows us to trace major orogenic structures from the basement to the surface. In the basin, the models are successfully imaging first-order folds and thrusts at kilometric scale. The velocity structure within the basement and its geometrical relationship with the base of inverted rift basins supports a progressive northward exhumation of deep crustal and mantle rocks in the hanging wall of north-vergent Pyrenean thrusts. Our tomographic models image in 3-D orogen-perpendicular structures responsible for crustal segmentation as the Saison and Barlanes transfer zones. We propose that these steep structures consist in tear faults that accommodate the deepening of the Mauleon basin basement from west to east. To the west, this basement made of former hyper-extended rift domains (including mantle rocks) is anomalously sampled within the hanging-wall of north-directed orogenic thrusts, explaining its shallow attitude and its best preservation in comparison to the eastern segment of the study area. Eastward, the vertical shift of the basement makes that the former Mauleon basin hyper-extended rift basement remained in a footwall situation in respect of orogenic thrust and was underthrust. The comparison of the tomographic models obtained with surface wave tomography and local earthquake tomography shows that each approach has its own advantages and shortcomings but also that they are very complementary in nature, which would suggest to combine them in joint inversions to further improve passive imaging of the shallow crust and sedimentary basins.


2021 ◽  
Vol 9 ◽  
Author(s):  
Dong-Hoon Sheen ◽  
Paul A. Friberg

Phase association is a process that links seismic phases triggered at the stations of a seismic network to declare the occurrence of earthquakes. During phase association, a set of phases from different stations is examined to determine the common origin of phases within a specific region, predominantly on the basis of a grid search and the sum of observations. The association of seismic phases in local earthquake monitoring systems or earthquake early warning systems is often disturbed not only by transient noises, but also by large regional or teleseismic events. To mitigate this disturbance, we developed a seismic phase association method, binder_max, which uses the maximum likelihood method to associate seismic phases. The method is based on the framework of binder_ew, the phase associator of Earthworm, but it uses a likelihood distribution of the arrival information instead of stacking arrival information. Applying binder_max to data from seismic networks of South Korea and Ohio, United States, we found a significant improvement in the robustness of the method against large regional or teleseismic events compared to binder_ew. Our results indicate that binder_max can associate seismic phases of local earthquakes to the same degree as binder_ew as well as can avoid many of the false associations that have limited binder_ew.


2021 ◽  
Vol 567 ◽  
pp. 116987
Author(s):  
Guangli Zhang ◽  
Yumei He ◽  
Yinshuang Ai ◽  
Mingming Jiang ◽  
Chit Thet Mon ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document