Development of a Novel Fuzzy Logic-Based Wetland Health Assessment Approach for the Management of Freshwater Wetland Ecosystems

Wetlands ◽  
2021 ◽  
Vol 41 (8) ◽  
Author(s):  
Sajad Soleymani Hasani ◽  
Alireza Mojtahedi ◽  
Mir Amir Mohammad Reshadi
Wetlands ◽  
2015 ◽  
Vol 35 (6) ◽  
pp. 1185-1200 ◽  
Author(s):  
Huicong Jia ◽  
Donghua Pan ◽  
Wanchang Zhang

2006 ◽  
Vol 289 (1-2) ◽  
pp. 17-34 ◽  
Author(s):  
Jessica L. M. Gutknecht ◽  
Robert M. Goodman ◽  
Teri C. Balser

2018 ◽  
Author(s):  
Dean J. Horton ◽  
Matthew J. Cooper ◽  
Anthony J. Wing ◽  
Peter S. Kourtev ◽  
Donald G. Uzarski ◽  
...  

ABSTRACTO2concentrations often fluctuate over diel timescales within wetlands, driven by temperature, sunlight, photosynthesis, and respiration. These daily fluxes have been shown to impact biogeochemical transformations (e.g. denitrification), which are mediated by the residing microbial community. However, little is known about how resident microbial communities respond to diel dramatic physical and chemical fluxes in freshwater wetland ecosystems. In this study, total microbial (bacterial and archaeal) community structure was significantly related to diel time points in just one out of four distinct freshwater wetlands sampled. This suggests that daily environmental shifts may influence wetlands differentially based upon the resident microbial community and specific physical and chemical conditions of a freshwater wetland. However, when exploring at finer resolutions of the microbial communities within each wetland, subcommunities within two wetlands were found to correspond to fluctuating O2levels. Microbial taxa that were found to be susceptible to fluctuating O2levels within these subnetworks may have intimate ties to metabolism and/or diel redox cycles. This study highlights that freshwater wetland microbial communities are often stable in community structure when confronted with short-term O2fluxes, however, specialist taxa may be sensitive to these same fluxes.


Author(s):  
M. A. Boon ◽  
R. Greenfield ◽  
S. Tesfamichael

The use of Unmanned Arial Vehicle (UAV) photogrammetry is a valuable tool to enhance our understanding of wetlands. Accurate planning derived from this technological advancement allows for more effective management and conservation of wetland areas. This paper presents results of a study that aimed at investigating the use of UAV photogrammetry as a tool to enhance the assessment of wetland ecosystems. The UAV images were collected during a single flight within 2½ hours over a 100 ha area at the Kameelzynkraal farm, Gauteng Province, South Africa. An AKS Y-6 MKII multi-rotor UAV and a digital camera on a motion compensated gimbal mount were utilised for the survey. Twenty ground control points (GCPs) were surveyed using a Trimble GPS to achieve geometrical precision and georeferencing accuracy. Structure-from-Motion (SfM) computer vision techniques were used to derive ultra-high resolution point clouds, orthophotos and 3D models from the multi-view photos. The geometric accuracy of the data based on the 20 GCP’s were 0.018 m for the overall, 0.0025 m for the vertical root mean squared error (RMSE) and an over all root mean square reprojection error of 0.18 pixel. The UAV products were then edited and subsequently analysed, interpreted and key attributes extracted using a selection of tools/ software applications to enhance the wetland assessment. The results exceeded our expectations and provided a valuable and accurate enhancement to the wetland delineation, classification and health assessment which even with detailed field studies would have been difficult to achieve.


Sign in / Sign up

Export Citation Format

Share Document