scholarly journals Microbial subnetworks related to short-term diel O2fluxes within geochemically distinct freshwater wetlands

2018 ◽  
Author(s):  
Dean J. Horton ◽  
Matthew J. Cooper ◽  
Anthony J. Wing ◽  
Peter S. Kourtev ◽  
Donald G. Uzarski ◽  
...  

ABSTRACTO2concentrations often fluctuate over diel timescales within wetlands, driven by temperature, sunlight, photosynthesis, and respiration. These daily fluxes have been shown to impact biogeochemical transformations (e.g. denitrification), which are mediated by the residing microbial community. However, little is known about how resident microbial communities respond to diel dramatic physical and chemical fluxes in freshwater wetland ecosystems. In this study, total microbial (bacterial and archaeal) community structure was significantly related to diel time points in just one out of four distinct freshwater wetlands sampled. This suggests that daily environmental shifts may influence wetlands differentially based upon the resident microbial community and specific physical and chemical conditions of a freshwater wetland. However, when exploring at finer resolutions of the microbial communities within each wetland, subcommunities within two wetlands were found to correspond to fluctuating O2levels. Microbial taxa that were found to be susceptible to fluctuating O2levels within these subnetworks may have intimate ties to metabolism and/or diel redox cycles. This study highlights that freshwater wetland microbial communities are often stable in community structure when confronted with short-term O2fluxes, however, specialist taxa may be sensitive to these same fluxes.

PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e3937 ◽  
Author(s):  
Miranda H. Hengy ◽  
Dean J. Horton ◽  
Donald G. Uzarski ◽  
Deric R. Learman

Lakes are dynamic and complex ecosystems that can be influenced by physical, chemical, and biological processes. Additionally, individual lakes are often chemically and physically distinct, even within the same geographic region. Here we show that differences in physicochemical conditions among freshwater lakes located on (and around) the same island, as well as within the water column of each lake, are significantly related to aquatic microbial community diversity. Water samples were collected over time from the surface and bottom-water within four freshwater lakes located around Beaver Island, MI within the Laurentian Great Lakes region. Three of the sampled lakes experienced seasonal lake mixing events, impacting either O2, pH, temperature, or a combination of the three. Microbial community alpha and beta diversity were assessed and individual microbial taxa were identified via high-throughput sequencing of the 16S rRNA gene. Results demonstrated that physical and chemical variability (temperature, dissolved oxygen, and pH) were significantly related to divergence in the beta diversity of surface and bottom-water microbial communities. Despite its correlation to microbial community structure in unconstrained analyses, constrained analyses demonstrated that dissolved organic carbon (DOC) concentration was not strongly related to microbial community structure among or within lakes. Additionally, several taxa were correlated (either positively or negatively) to environmental variables, which could be related to aerobic and anaerobic metabolisms. This study highlights the measurable relationships between environmental conditions and microbial communities within freshwater temperate lakes around the same island.


2012 ◽  
Vol 78 (21) ◽  
pp. 7587-7595 ◽  
Author(s):  
Karelyn Cruz-Martínez ◽  
Anna Rosling ◽  
Yang Zhang ◽  
Mingzhou Song ◽  
Gary L. Andersen ◽  
...  

ABSTRACTIn Mediterranean-type grassland ecosystems, the timing of rainfall events controls biogeochemical cycles, as well as the phenology and productivity of plants and animals. Here, we investigate the effect of short-term (days) soil environmental conditions on microbial community structure and composition during a natural wetting and drying cycle. Soil samples were collected from a meadow in Northern California at four time points after the first two rainfall events of the rainy season. We used 16S rRNA microarrays (PhyloChip) to track changes in bacterial and archaeal community composition. Microbial communities at time points 1 and 3 were significantly different than communities at time points 2 and 4. Based on ordination analysis, the available carbon, soil moisture, and temperature explained most of the variation in community structure. For the first time, a complementary and more comprehensive approach using linear regression and generalized logical networks were used to identify linear and nonlinear associations among environmental variables and with the relative abundance of subfamilies. Changes in soil moisture and available carbon were correlated with the relative abundance of many phyla. Only the phylumActinobacteriashowed a lineage-specific relationship to soil moisture but not to carbon or nitrogen. The results indicate that the use of a high taxonomic rank in correlations with nutritional indicators might obscure divergent subfamily-level responses to environmental parameters. An important implication of this research is that there is short-term variation in microbial community composition driven in part by rainfall fluctuation that may not be evident in long-term studies with coarser time resolution.


2019 ◽  
Author(s):  
Meijia Li ◽  
Yayu Zhang

Abstract Background This study analyzed the effect of silicon (Si) application on the occurrence of ginseng black spot caused by Alternaria panax. We explored the differences in soil physical and chemical factors and microbial community structure following Si application as well as the key factors that affected the occurrence of ginseng black spot in soil. Potted Panax ginseng plants were used to assess the effect of Si treatment on ginseng black spot. Plants were grown under four kinds of treatment: (1) control (no inoculations), (2) inoculation with A. panax, (3) inoculation wit Si, and (4) inoculation with A. panax + Si, with 18 plants (3 pots) per treatment. Soil physical and chemical properties were comprehensively analyzed. Bacterial communities were analyzed using Illumina HiSeq sequencing targeting the 16S rRNA gene. Using micro-ecological regulation measures, we developed a theoretical basis for the prevention and control of ginseng black spot. Results After inoculation with A. panax, the morbidity (and morbidity index) of ginseng with and without Si was 52% (46) and 83% (77), respectively. Soil physical and chemical analysis showed that under the ginseng black spot inoculation, bacterial communities were mainly affected by pH and available potassium, followed by ammonium nitrogen and available Si. NMDS and PLS-DA analyses and the heat maps of relative abundance revealed that Si application elevated the resistance of ginseng black spot as regulated by the abundance and diversity of bacterial flora in rhizosphere soils. Heatmap analysis at the genus level revealed that A. panax + Si inoculations significantly increased the soil community abundance of Sandaracinus, Polycyclovorans, Hirschia, Haliangium, Nitrospira, Saccharothrix, Aeromicrobium, Luteimonas, and Rubellimicrobium and led to a bacterial community structure with relative abundances that were significantly similar to that of untreated soil. Conclusions Si alleviated the incidence of ginseng black spot by directly and indirectly affecting the structure and diversity of the soil microbial community. Short-term Si application also significantly regulated the structural impact on soil microorganisms caused by ginseng black spot. Our findings indicated that Si applications may possibly be used in the prevention and treatment of ginseng black spot.


2014 ◽  
Vol 1051 ◽  
pp. 311-316 ◽  
Author(s):  
Xi Mei Luo ◽  
Zhi Lei Gao ◽  
Hui Min Zhang ◽  
An Jun Li ◽  
Hong Kui He ◽  
...  

In recent years, despite the significant improvement of sequencing technologies such as the pyrosequencing, rapid evaluation of microbial community structures remains very difficult because of the abundance and complexity of organisms in almost all natural microbial communities. In this paper, a group of phylum-specific primers were elaborately designed based on a single nucleotide discrimination technology to quantify the main microbial community structure from GuJingGong pit mud samples using the real-time quantitative PCR (qPCR). Specific PCR (polymerase chain reaction) primers targeting a particular group would provide promising sensitivity and more in-depth assessment of microbial communities.


2020 ◽  
Author(s):  
Wu Qu ◽  
Boliang Gao ◽  
Jie Wu ◽  
Min Jin ◽  
Jianxin Wang ◽  
...  

Abstract Background Microbial roles in element cycling and nutrient providing are crucial for mangrove ecosystems and serve as important regulators for climate change in Earth ecosystem. However, some key information about the spatiotemporal influences and abiotic and biotic shaping factors for the microbial communities in mangrove sediments remains lacking. Methods In this work, 22 sediment samples were collected from multiple spatiotemporal dimensions, including three locations, two depths, and four seasons, and the bacterial, archaeal, and fungal community structures in these samples were studied using amplicon sequencing. Results The microbial community structures were varied in the samples from different depths and locations based on the results of LDA effect size analysis, principal coordinate analysis, the analysis of similarities, and permutational multivariate ANOVA. However, these microbial community structures were stable among the seasonal samples. Linear fitting models and Mantel test showed that among the 13 environmental factors measured in this study, the sediment particle size (PS) was the key abiotic shaping factor for the bacterial, archaeal, or fungal community structure. Besides PS, salinity and humidity were also significant impact factors according to the canonical correlation analysis (p ≤ 0.05). Co-occurrence networks demonstrated that the bacteria assigned into phyla Ignavibacteriae, Proteobacteria, Bacteroidetes, Chloroflexi, and Acidobacteria were the key biotic factors for shaping the bacterial community in mangrove sediments. Conclusions This work showed the variability on spatial dimensions and the stability on temporal dimension for the bacterial, archaeal, or fungal microbial community structure, indicating that the tropical mangrove sediments are versatile but stable environments. PS served as the key abiotic factor could indirectly participate in material circulation in mangroves by influencing microbial community structures, along with salinity and humidity. The bacteria as key biotic factors were found with the abilities of photosynthesis, polysaccharide degradation, or nitrogen fixation, which were potential indicators for monitoring mangrove health, as well as crucial participants in the storage of mangrove blue carbons and mitigation of climate warming. This study expanded the knowledge of mangroves for the spatiotemporal variation, distribution, and regulation of the microbial community structures, thus further elucidating the microbial roles in mangrove management and climate regulation.


2018 ◽  
Author(s):  
Maozhen Han ◽  
Melissa Dsouza ◽  
Chunyu Zhou ◽  
Hongjun Li ◽  
Junqian Zhang ◽  
...  

AbstractBackgroundAgricultural activities, such as stock-farming, planting industry, and fish aquaculture, can influence the physicochemistry and biology of freshwater lakes. However, the extent to which these agricultural activities, especially those that result in eutrophication and antibiotic pollution, effect water and sediment-associated microbial ecology, remains unclear.MethodsWe performed a geospatial analysis of water and sediment associated microbial community structure, as well as physicochemical parameters and antibiotic pollution, across 18 sites in Honghu lake, which range from impacted to less-impacted by agricultural pollution. Furthermore, the co-occurrence network of water and sediment were built and compared accorded to the agricultural activities.ResultsPhysicochemical properties including TN, TP, NO3--N, and NO2--N were correlated with microbial compositional differences in water samples. Likewise, in sediment samples, Sed-OM and Sed-TN correlated with microbial diversity. Oxytetracycline and tetracycline concentration described the majority of the variance in taxonomic and predicted functional diversity between impacted and less-impacted sites in water and sediment samples, respectively. Finally, the structure of microbial co-associations was influenced by the eutrophication and antibiotic pollution.ConclusionThese analyses of the composition and structure of water and sediment microbial communities in anthropologically-impacted lakes are imperative for effective environmental pollution monitoring. Likewise, the exploration of the associations between environmental variables (e.g. physicochemical properties, and antibiotics) and community structure is important in the assessment of lake water quality and its ability to sustain agriculture. These results show agricultural practices can negatively influence not only the physicochemical properties, but also the biodiversity of microbial communities associated with the Honghu lake ecosystem. And these results provide compelling evidence that the microbial community can be used as a sentinel of eutrophication and antibiotics pollution risk associated with agricultural activity; and that proper monitoring of this environment is vital to maintain a sustainable environment in Honghu lake.


2020 ◽  
Vol 9 (41) ◽  
Author(s):  
Ariane L. Peralta ◽  
Regina B. Bledsoe ◽  
Mario E. Muscarella ◽  
Marcel Huntemann ◽  
Alicia Clum ◽  
...  

ABSTRACT Hydrologic changes modify microbial community structure and ecosystem functions, especially in wetland systems. Here, we present 24 metagenomes from a coastal freshwater wetland experiment in which we manipulated hydrologic conditions and plant presence. These wetland soil metagenomes will deepen our understanding of how hydrology and vegetation influence microbial functional diversity.


1986 ◽  
Vol 32 (4) ◽  
pp. 319-325 ◽  
Author(s):  
Thomas W. Federle ◽  
Robert J. Livingston ◽  
Loretta E. Wolfe ◽  
David C. White

Estuarine soft-bottom sediments in microcosms and the field were compared with regard to microbial community structure. Community structure was determined by analyzing the fatty acids derived from the microbial lipids in the sediments. Fatty acid profiles were compared using a multivariate statistical approach. Experiments were performed using sediments from St. George Sound and Apalachicola Bay, Florida. The community structure of St. George Sound sediments was apparently controlled by epibenthic predators. In Apalachicola Bay, the dominant influences were physical factors related to the flow of the Apalachicola River. In the St. George Sound experiment, microbial communities in the microcosms differed from those in the field after only 2 weeks, and the degree of this difference increased substantially as time progressed. In the Apalachicola Bay experiment, although microbial communities in the microcosms were detectably different from those in the field, the degree of this difference was not large nor did it increase with time. This differential behavior of sediment communities from different sites may be related to the different ecological factors regulating community composition at these sites.


Sign in / Sign up

Export Citation Format

Share Document