Trichoderma spp. isolates from the rhizosphere of healthy olive trees in northern Algeria and their biocontrol potentials against the olive wilt pathogen, Verticillium dahliae

Author(s):  
Abdenaceur Reghmit ◽  
Farida Benzina-tihar ◽  
Francisco Javier López Escudero ◽  
Fatma Halouane-Sahir ◽  
Zahia Oukali ◽  
...  
2006 ◽  
Vol 96 (5) ◽  
pp. 485-495 ◽  
Author(s):  
Melania Collado-Romero ◽  
Jesús Mercado-Blanco ◽  
Concepción Olivares-García ◽  
Antonio Valverde-Corredor ◽  
Rafael M. Jiménez-Díaz

A degree of genetic diversity may exist among Verticillium dahliae isolates within vegetative compatibility groups (VCGs) that bears phytopathological significance and is worth investigating using molecular tools of a higher resolution than VCG characterization. The molecular variability within and among V. dahliae VCGs was studied using 53 artichoke isolates from eastern-central Spain, 96 isolates from cotton, 7 from cotton soil, and 45 from olive trees in countries of the Mediterranean Basin. Isolates were selected to represent the widest available diversity in cotton- and olive-defoliating (D) and -nondefoliating (ND) pathotypes, as well as for VCG. The VCG of 96 cotton and olive isolates was determined in this present study. Molecular variability among V. dahliae isolates was assessed by fluorescent amplified fragment length polymorphism (AFLP) analysis and by polymerase chain reaction (PCR) assays for DNA fragments associated with the D (462 bp) and ND (824 bp) pathotypes, as well as a 334-bp amplicon associated with D pathotype isolates but also present in some VCG2B isolates. Isolates from cotton were in VCG1A, VCG1B, VCG2A, VCG2B, and VCG4B and those from olive trees were in VCG1A, VCG2A, and VCG4B. Artichoke isolates included representatives of VCG1A, VCG2A, VCG2B (including a newly identified VCG2Ba), and VCG4B. AFLP data were used to generate matrixes of genetic distance among isolates for cluster analysis using the neighbor-joining method and for analysis of molecular variance. Results demonstrated that V. dahliae isolates within a VCG subgroup are molecularly similar, to the extent that clustering of isolates correlated with VCG subgroups regardless of the host source and geographic origin. VCGs differed in molecular variability, with the variability being highest in VCG2B and VCG2A. For some AFLP/VCG subgroup clusterings, V. dahliae isolates from artichoke grouped in subclusters clearly distinct from those comprising isolates from cotton and olive trees. In addition, VCG2B isolates from artichoke formed two distinct clusters that correlated with PCR markers of 334 bp (VCG2B334) or 824 bp (VCG2B824). Artichoke isolates in the VCG2B334/2β334 cluster were molecularly similar to isolates of VCG1A. The molecular difference found among artichoke isolates in VCG2B correlates with virulence of isolates to artichoke and cotton cultivars demonstrated in a previous study.


2017 ◽  
Vol 14 (2) ◽  
pp. 727-734
Author(s):  
Saba Aslani ◽  
Ghasemali Garoosi ◽  
Hossein Jafary

ABSTRACT: Verticillium wilt, which is caused by the fungus Verticillium dahliae, is one of the most important olive diseases worldwide. There are many ways to extract DNA from plant pathogenic fungi and from plant tissues for molecular-based diagnostic assays. LAMP is a new and sensitive molecular-based technique used for detection of plant pathogenic agents with minimum requirements needed. In this study, we tried to achieve a simple, cost effective and efficient method of DNA extraction from both Verticillium dahliae fungus and from infected wood samples in order to run a loop-mediated isothermal amplification (LAMP) assay. Efficiency of three DNA isolation methods from both mycelia and infected wood samples was evaluated. For this purpose, wood samples from infected olive trees were collected from Tarom region in Zanjan province and the samples were cultured on the media. The fungus was isolated and identified as V. dahliae based on morphological features. Then the genomic DNA was extracted using traditional CTAB method, fast NaOH method and direct isolation method from infected wood samples. After assessment of the quality and the quantity of the extracted DNA samples, a LAMP assay was ran using specific primer pairs and the DNA templates extracted using three different methods. In spite of the significant differences in the quantity of DNA samples, LAMP assay could successfully detect the fungus in all samples. The improved direct isolation of the DNA of V. dahlia from infected wood, followed by a LAMP assay could considerably shortened the detection process of the fungus and hence is a suitable method for screening of olive trees and saplings against Verticillium wilt disease.


2011 ◽  
Vol 101 (3) ◽  
pp. 304-315 ◽  
Author(s):  
Rafael M. Jiménez-Díaz ◽  
Concepción Olivares-García ◽  
Blanca B. Landa ◽  
María del Mar Jiménez-Gasco ◽  
Juan A. Navas-Cortés

Severity of Verticillium wilt in olive trees in Andalusia, southern Spain is associated with the spread of a highly virulent, defoliating (D) Verticillium dahliae pathotype of vegetative compatibility group 1A (VCG1A) but the extent of this spread and the diversity of the pathogen population have never been documented. VCG typing of 637 V. dahliae isolates from 433 trees in 65 orchards from five olive-growing provinces in Andalusia indicated that 78.1% were of VCG1A, 19.8% of VCG2A, 0.6% of VCG2B, 1.4% of VCG4B, and one isolate was heterokaryon self-incompatible. A single VCG prevailed among isolates within most orchards but two and three VCGs were identified in 12 and 3 orchards, respectively, with VCG1A+VCG2A occurring in 10 orchards. VCG1A was the predominant VCG in the three most important olive-growing provinces, and was almost as prevalent as VCG2A in another one. Molecular pathotyping of the 637 isolates using specific polymerase chain reaction assays indicated that VCG1A isolates were of the D pathotype whereas isolates of VCG2A, -2B, and -4B were of the less virulent nondefoliating (ND) pathotype. The pathotype of isolates correlated with the disease syndrome affecting sampled trees. Only three (seq1, seq2, and seq4) of the seven known sequences of the V. dahliae-specific 539- or 523-bp amplicon were identified among the 637 isolates. Distribution and prevalence of VCGs and seq sequences among orchards indicated that genetic diversity within olive V. dahliae in Andalusia is higher in provinces where VCG1A is not prevalent. Log-linear analysis revealed that irrigation management, source of irrigation water, source of planting stock, and cropping history of soil were significantly associated with the prevalence of VCG1A compared with that of VCG2A. Multivariate analyses using a selected set of agricultural factors as variables allowed development of a discriminant model for predicting the occurrence of D and ND pathotypes in the area of the study. Blind tests using this model correctly indentified the V. dahliae pathotype occurring in an orchard. The widespread occurrence and high prevalence of VCG1A/D pathotype in Andalusia have strong implications for the management of the disease.


Plant Disease ◽  
2007 ◽  
Vol 91 (11) ◽  
pp. 1372-1378 ◽  
Author(s):  
F. J. López-Escudero ◽  
M. A. Blanco-López

An experiment was conducted in microplots which were artificially infested with a defoliating isolate of Verticillium dahliae using seven different treatments of inoculum densities ranging from 0 to 10 microsclerotia per gram of soil (ppg). The experiment was conducted in Andalucía (southern Spain), and the susceptible Spanish olive cv. Picual was used to determine the relationship between pathogen inoculum density and the progress of Verticillium wilt of olive (VWO). The inoculum, produced on a sodium pectate cellophane medium, was found to efficiently infect olive trees. Symptoms first appeared 30 weeks after the trees were transplanted into infested soil. Periods of increasing disease incidence in the following seasons and years were mainly during spring and autumn, particularly in the second year after planting. Olive trees exhibited a high susceptibility to the defoliating pathotype of the pathogen, even at very low inoculum levels; in fact, diseased plants were encountered throughout the experiment regardless of the inoculum density treatment. Inoculum densities greater than 3 ppg in the soil resulted in final disease incidence greater than 50% for the trees after 2.5 years. Therefore, these inoculum densities must be considered very high for olive trees. There were no differences in final disease incidence, mean symptom severity, or area under the disease progress curve between plots infested with 10 or 3.33 ppg, whereas other treatments exhibited lower values for each of these disease parameters. The temporal variations of disease incidence and severity were highly correlated for the higher inoculum density treatments, with r2 values ranging from 0.92 to 0.84 for disease incidence and from 0.93 to 0.88 for severity. However, r2 was slightly lower for the treatments involving lower inoculum densities of the pathogen in microplots. The slopes of the linear regression curves were statistically different for nearly all the inoculum density treatments. Positive correlation was found between the initial inoculum density and final disease incidence values after the study period that was accurately explained by mathematical models. The results suggest that susceptible olive cultivars should not be planted in soils infested with virulent defoliating pathotypes of V. dahliae. Results also clarify that inoculum density levels obtained from field soil analyses can be used for establishing a risk prediction system with a view to controlling VWO in olive tree plantations.


2005 ◽  
Vol 113 (4) ◽  
pp. 367-375 ◽  
Author(s):  
F. J. López-Escudero ◽  
M. A. Blanco-López

Plant Disease ◽  
2003 ◽  
Vol 87 (12) ◽  
pp. 1487-1494 ◽  
Author(s):  
J. Mercado-Blanco ◽  
D. Rodríguez-Jurado ◽  
S. Parrilla-Araujo ◽  
R. M. Jiménez-Díaz

Pathogen-free certified planting material and accurate detection of Verticillium dahliae pathotypes infecting the plant are key components of successful management of Verticillium wilt of olive. Use of a nested-polymerase chain reaction (PCR) procedure developed in earlier studies for in planta detection of the defoliating (D) and nondefoliating (ND) V. dahliae pathotypes resulted in ambiguous detection of the pathogen in some cases, due to heterologous amplification of the D-associated marker in ND-infected olive plants. In the present study, an improved procedure was developed that eliminates ambiguity and reduces time and cost for detection of D and ND V. dahliae in olive. The improved procedure is based on the simultaneous amplification of both an ND- and a new D-specific marker by means of duplex, nested PCR. The procedure was effective in the rapid and unequivocal detection of the D and ND V. dahliae in both artificially inoculated, own-rooted olive plants and naturally infected adult olive trees of different cultivar, age, and growing conditions. Furthermore, the duplex, nested-PCR procedure detected simultaneously the D and ND pathotypes in adult olive trees naturally infected by both pathotypes and in young olive plants that were double-inoculated with D and ND isolates under controlled conditions.


2020 ◽  
Author(s):  
Juan Miguel Requena-Mullor ◽  
Jose Manuel García-Garrido ◽  
Pedro Antonio García ◽  
Estefanía Rodríguez

AbstractVerticillium wilt, caused by the soil-borne fungus Verticillium dahliae, is one of the most harmful diseases in Mediterranean olive-growing areas. Although, the effects of both soil temperature and moisture on V. dahliae are well known, there is scant knowledge about what climatic drivers affect the occurrence of the pathogen on a landscape scale. Here, we investigate what climatic drivers determine V. dahliae occurrence in olive-growing areas in southern Spain. In order to bridge this gap in knowledge, a landscape-scale field survey was carried out to collect data on the occurrence of V. dahliae in 779 olive groves in Granada province. Forty models based on competing combinations of climatic variables were fitted and evaluated using information-theoretic methods. A model that included a multiplicative combination of seasonal and extreme climatic variables was found to be the most viable one. Isothermality and the seasonal distribution of precipitation were the most important variables influencing the occurrence of the pathogen. The isothermal effect was in turn modulated by the seasonality of rainfall, and this became less negative as seasonality increases. Thus, V. dahliae occurs more frequently in olive-growing areas where the day-night temperature oscillation is lower than the summer-winter one. We also found that irrigation reduced the influence of isothermality on occurrence. Our results demonstrate that long-term “sophisticated” climatic factors rather than “primary” variables, such as annual trends, can better explain the spatial patterns of V. dahliae occurrence in Mediterranean, southern Spain. One important implication of our study is that appropriate irrigation management, when temperature oscillation approaches optimal conditions for V. dahliae to thrive, may reduce the appearance of symptoms in olive trees.


Sign in / Sign up

Export Citation Format

Share Document