Multi-objective linear fractional inventory problem under intuitionistic fuzzy environment

Author(s):  
Irfan Ali ◽  
Srikant Gupta ◽  
Aquil Ahmed
2021 ◽  
pp. 1-18
Author(s):  
Xiang Jia ◽  
Xinfan Wang ◽  
Yuanfang Zhu ◽  
Lang Zhou ◽  
Huan Zhou

This study proposes a two-sided matching decision-making (TSMDM) approach by combining the regret theory under the intuitionistic fuzzy environment. At first, according to the Hamming distance of intuitionistic fuzzy sets and regret theory, superior and inferior flows are defined to describe the comparative preference of subjects. Hereafter, the satisfaction degrees are obtained by integrating the superior and inferior flows of the subjects. The comprehensive satisfaction degrees are calculated by aggregating the satisfaction degrees, based on which, a multi-objective TSMDM model is built. Furthermore, the multi-objective TSMDM model is converted to a single-objective model, the optimal solution of the latter is derived. Finally, an illustrative example and several analyses are provided to verify the feasibility and the effectiveness of the proposed approach.


Author(s):  
Srikant Gupta ◽  
Ahteshamul Haq ◽  
Irfan Ali ◽  
Biswajit Sarkar

AbstractDetermining the methods for fulfilling the continuously increasing customer expectations and maintaining competitiveness in the market while limiting controllable expenses is challenging. Our study thus identifies inefficiencies in the supply chain network (SCN). The initial goal is to obtain the best allocation order for products from various sources with different destinations in an optimal manner. This study considers two types of decision-makers (DMs) operating at two separate groups of SCN, that is, a bi-level decision-making process. The first-level DM moves first and determines the amounts of the quantity transported to distributors, and the second-level DM then rationally chooses their amounts. First-level decision-makers (FLDMs) aimed at minimizing the total costs of transportation, while second-level decision-makers (SLDM) attempt to simultaneously minimize the total delivery time of the SCN and balance the allocation order between various sources and destinations. This investigation implements fuzzy goal programming (FGP) to solve the multi-objective of SCN in an intuitionistic fuzzy environment. The FGP concept was used to define the fuzzy goals, build linear and nonlinear membership functions, and achieve the compromise solution. A real-life case study was used to illustrate the proposed work. The obtained result shows the optimal quantities transported from the various sources to the various destinations that could enable managers to detect the optimum quantity of the product when hierarchical decision-making involving two levels. A case study then illustrates the application of the proposed work.


2013 ◽  
Vol 11 (9) ◽  
pp. 3015-3024
Author(s):  
Arindam Garai ◽  
Tapan Kumar Roy

This paper presents solution technique for travelling salesman problem (TSP) under intuitionistic fuzzy environment. Travelling salesman problem is a non-deterministic polynomial-time (NP) hard problem in combinatorial optimization, studied in graph theory, operations research and theoretical computer science. It must be noted that a traveling sales man even face a situation in which he is not able to achieve his objectives completely. There must be a set of alternatives from which he can select one that best meets his aspiration level. For Multi-Objective Symmetric TSP, in fuzzy environment, it is converted into a Linear Program using Fuzzy Multi-Objective Linear Programming technique. A route cannot be simply chosen just as it will most minimize time or it will cover the least possible distance. Examples with requirements to consider the degree of rejection or hesitation (or both) are overflowing in our materialistic world. Here comes the need to consider TSP under intuitionistic fuzzy environment. The degree of rejection as well as the degree of hesitancy must be studied to find the solution in a truly optimum sense! Proposed technique is an extension as well as collaboration of ideas of fuzzy traveling salesperson problem and intuitionistic fuzzy (IF) optimization technique.


Sign in / Sign up

Export Citation Format

Share Document