Solving multi-objective decision making problem in intuitionistic fuzzy environment

Author(s):  
Anil Kumar Nishad ◽  
S. R. Singh
2021 ◽  
pp. 1-18
Author(s):  
Xiang Jia ◽  
Xinfan Wang ◽  
Yuanfang Zhu ◽  
Lang Zhou ◽  
Huan Zhou

This study proposes a two-sided matching decision-making (TSMDM) approach by combining the regret theory under the intuitionistic fuzzy environment. At first, according to the Hamming distance of intuitionistic fuzzy sets and regret theory, superior and inferior flows are defined to describe the comparative preference of subjects. Hereafter, the satisfaction degrees are obtained by integrating the superior and inferior flows of the subjects. The comprehensive satisfaction degrees are calculated by aggregating the satisfaction degrees, based on which, a multi-objective TSMDM model is built. Furthermore, the multi-objective TSMDM model is converted to a single-objective model, the optimal solution of the latter is derived. Finally, an illustrative example and several analyses are provided to verify the feasibility and the effectiveness of the proposed approach.


Author(s):  
Srikant Gupta ◽  
Ahteshamul Haq ◽  
Irfan Ali ◽  
Biswajit Sarkar

AbstractDetermining the methods for fulfilling the continuously increasing customer expectations and maintaining competitiveness in the market while limiting controllable expenses is challenging. Our study thus identifies inefficiencies in the supply chain network (SCN). The initial goal is to obtain the best allocation order for products from various sources with different destinations in an optimal manner. This study considers two types of decision-makers (DMs) operating at two separate groups of SCN, that is, a bi-level decision-making process. The first-level DM moves first and determines the amounts of the quantity transported to distributors, and the second-level DM then rationally chooses their amounts. First-level decision-makers (FLDMs) aimed at minimizing the total costs of transportation, while second-level decision-makers (SLDM) attempt to simultaneously minimize the total delivery time of the SCN and balance the allocation order between various sources and destinations. This investigation implements fuzzy goal programming (FGP) to solve the multi-objective of SCN in an intuitionistic fuzzy environment. The FGP concept was used to define the fuzzy goals, build linear and nonlinear membership functions, and achieve the compromise solution. A real-life case study was used to illustrate the proposed work. The obtained result shows the optimal quantities transported from the various sources to the various destinations that could enable managers to detect the optimum quantity of the product when hierarchical decision-making involving two levels. A case study then illustrates the application of the proposed work.


2013 ◽  
Vol 2013 ◽  
pp. 1-16 ◽  
Author(s):  
Chunqiao Tan ◽  
Xiaohong Chen

An effective decision making approach based on VIKOR and Choquet integral is developed to solve multicriteria group decision making problem with conflicting criteria and interdependent subjective preference of decision makers in a fuzzy environment where preferences of decision makers with respect to criteria are represented by interval-valued intuitionistic fuzzy sets. First, an interval-valued intuitionistic fuzzy Choquet integral operator is given. Some of its properties are investigated in detail. The extended VIKOR decision procedure based on the proposed operator is developed for solving the multicriteria group decision making problem where the interactive criteria weight is measured by Shapley value. An illustrative example is given for demonstrating the applicability of the proposed decision procedure for solving the multi-criteria group decision making problem in interval-valued intuitionistic fuzzy environment.


Author(s):  
Szabolcs Duleba ◽  
Ahmad Alkharabsheh ◽  
Fatma Kutlu Gündoğdu

AbstractIn the case of conflicting individuals or evaluator groups, finding the common preferences of the participants is a challenging task. This statement also refers to Intuitionistic Fuzzy Analytic Hierarchy Process models, in which uncertainty of the scoring of individuals is well-handled, however, the aggregation of the modified scores is generally conducted by the conventional way of multi-criteria decision-making. This paper offers two options for this aggregation: the relatively well-known entropy-based, and the lately emerged distance-based aggregations. The manuscript can be considered as a pioneer work by analyzing the nature of distance-based aggregation under a fuzzy environment. In the proposed model, three clearly separable conflicting groups are examined, and the objective is to find their common priority vector, which can be satisfactory to all participant clusters. We have tested the model results on a real-world case study, on a public transport development decision-making problem by conducting a large-scale survey involving three different stakeholder groups of transportation. The comparison of the different approaches has shown that both entropy-based and distance-based techniques can provide a feasible solution based on their high similarity in the final ordinal and cardinal outcomes.


2014 ◽  
Vol 11 (2) ◽  
pp. 839-857 ◽  
Author(s):  
Zeng Shouzhen ◽  
Wang Qifeng ◽  
José Merigó ◽  
Pan Tiejun

We present the induced intuitionistic fuzzy ordered weighted averaging-weighted average (I-IFOWAWA) operator. It is a new aggregation operator that uses the intuitionistic fuzzy weighted average (IFWA) and the induced intuitionistic fuzzy ordered weighted averaging (I-IFOWA) operator in the same formulation. We study some of its main properties and we have seen that it has a lot of particular cases such as the IFWA and the intuitionistic fuzzy ordered weighted averaging (IFOWA) operator. We also study its applicability in a decision-making problem concerning strategic selection of investments. We see that depending on the particular type of I-IFOWAWA operator used, the results may lead to different decisions.


Author(s):  
Bhagawati Prasad Joshi ◽  
Abhay Kumar

The fusion of multidimensional intuitionistic fuzzy information plays an important part in decision making processes under an intuitionistic fuzzy environment. In this chapter, it is observed that existing intuitionistic fuzzy Einstein hybrid aggregation operators do not follow the idempotency and boundedness. This leads to sometimes illogical and even absurd results to the decision maker. Hence, some new intuitionistic fuzzy Einstein hybrid aggregation operators such as the new intuitionistic fuzzy Einstein hybrid weighted averaging (IFEHWA) and the new intuitionistic fuzzy Einstein hybrid weighted geometric (IFEHWG) were developed. The new IFEHWA and IFEHWG operators can weigh the arguments as well as their ordered positions the same as the intuitionistic fuzzy Einstein hybrid aggregation operators do. Further, it is validated that the defined operators are idempotent, bounded, monotonic and commutative. Then, based on the developed approach, a multi-criteria decision-making (MCDM) procedure is given. Finally, a numerical example is conducted to demonstrate the proposed method effectively.


Sign in / Sign up

Export Citation Format

Share Document