scholarly journals A prediction model for water breakthrough time in high-sulfur gas reservoir with edge water

2017 ◽  
Vol 8 (3) ◽  
pp. 855-860 ◽  
Author(s):  
Xiao Guo ◽  
Pengbin Du ◽  
Peng Wang ◽  
Hailong Dang ◽  
Tao Gao ◽  
...  
2020 ◽  
Vol 213 ◽  
pp. 02009
Author(s):  
Quan Hua Huang ◽  
Xing Yu Lin

Horizontal Wells are often used to develop condensate gas reservoirs. When there is edge water in the gas reservoir, it will have a negative impact on the production of natural gas. Therefore, reasonable prediction of its water breakthrough time is of great significance for the efficient development of condensate gas reservoirs.At present, the prediction model of water breakthrough time in horizontal Wells of condensate gas reservoir is not perfect, and there are mainly problems such as incomplete consideration of retrograde condensate pollution and inaccurate determination of horizontal well seepage model. Based on the ellipsoidal horizontal well seepage model, considering the advance of edge water to the bottom of the well and condensate oil to formation, the advance of edge water is divided into two processes. The time when the first water molecule reaches the bottom of the well when the edge water tongue enters is deduced, that is, the time of edge water breakthrough in condensate gas reservoir.The calculation results show that the relative error of water breakthrough time considering retrograde condensate pollution is less than that without consideration, with a higher accuracy. The example error is less than 2%, which can be effectively applied to the development of edge water gas reservoir.


2013 ◽  
Vol 423-426 ◽  
pp. 1716-1721
Author(s):  
Xiao He Huang ◽  
Wei Yao Zhu ◽  
Yu Lou

There are two percolation models, horizontal radial flow above perforation interval, and semispherical centripetal flow below perforation interval. Based on this models and the theory of percolation flow through porous media, a study on prediction of water breakthrough time in fractured gas reservoir with bottom water is presented. Through mathematical calculations, a formula to determine the time of water breakthrough in fractured gas reservoir with bottom water wells is derived. Case study indicates that water breakthrough time decreases with the fracture development index. With increase of perforated degree, water breakthrough time increase first and then decreased after a critical value, which could be considered as optimum perforation degree. If the perforated degree is fixed, the water breakthrough time is directly proportional to the thickness of the gas reservoir and inversely proportional to the gas production rate.


2012 ◽  
Vol 616-618 ◽  
pp. 870-876
Author(s):  
Zong Yu Li ◽  
Ai Zhang ◽  
Shi Sheng Xu ◽  
Yun Feng He

This paper takes Yakela-dalaoba edge water and the Luntai basal water condensate gas reservoir for example, analyzes the condensate gas reservoir of edge-water or basal-water production characteristics, water production law in development process, and summarizes the three kinds of type water production of condensate gas reservoir, and put forward water control countermeasures specific to different water production type. Set up four edge-water or basal-water breakthrough models of gas condensate wells and the corresponding control measures, and being applied to the water control of Ya-Da gas condensate wells water gradually and the control effect is remarkable. Through the research of water production law and control countermeasures in Ya-Da condensate gas reservoir, provide significant development guidance for the other condensate gas reservoir which contains water.


2011 ◽  
Vol 121-126 ◽  
pp. 1249-1253
Author(s):  
Guo Yun Wu ◽  
Jiao Li

Multi-layered unconsolidated sandstone gas reservoir is featured by unconsolidated lithology, interbeded gas-water zones and active edge water. Irrational production proration will lead to water breakthrough and sand inflow(AOF) is already incompetent in solving problems nowadays. Based on multipoint well test deliverability analysis, production data dynamic analysis, single well controlled reserves and critical situation of inflow calculation, and combining the calculation of minimum liquid hold-up gas rate an maximum erosion gas rate, meanwhile considering balanced gas recovery factor, balanced pressure drop, safe sand inflow and safe liquid hold-up, the multi-factor production plan has been set up, which is improved and adjusted by integrating water influx performance and years of stable production, through gas reservoir numerical simulation. A scientific and rational production proration pattern particularly for this type of gas reservoir has been determined. The reservoir simulation results of case study show that the water production in gas well can be controlled and the gas reservoir sustained stable production can last more than 1.3 year.


Sign in / Sign up

Export Citation Format

Share Document