Water Production Performance and its Control of the Ya-Da Condensate Gas Reservoir

2012 ◽  
Vol 616-618 ◽  
pp. 870-876
Author(s):  
Zong Yu Li ◽  
Ai Zhang ◽  
Shi Sheng Xu ◽  
Yun Feng He

This paper takes Yakela-dalaoba edge water and the Luntai basal water condensate gas reservoir for example, analyzes the condensate gas reservoir of edge-water or basal-water production characteristics, water production law in development process, and summarizes the three kinds of type water production of condensate gas reservoir, and put forward water control countermeasures specific to different water production type. Set up four edge-water or basal-water breakthrough models of gas condensate wells and the corresponding control measures, and being applied to the water control of Ya-Da gas condensate wells water gradually and the control effect is remarkable. Through the research of water production law and control countermeasures in Ya-Da condensate gas reservoir, provide significant development guidance for the other condensate gas reservoir which contains water.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Xuan Xu ◽  
Xizhe Li ◽  
Yong Hu ◽  
Qingyan Mei ◽  
Yu Shi ◽  
...  

AbstractThe development of water drive gas reservoirs (WDGRs) with fractures or strong heterogeneity is severely influenced by water invasion. Accurately simulating the rules of water invasion and drainage gas recovery countermeasures in fractured WDGRs, thereby revealing the mechanism of water invasion and an appropriate development strategy, is important for formulating water management measures and enhancing the recovery of gas reservoirs. In this work, physical simulation methods were proposed to gain a better understanding of water invasion and to optimize the water control of fractured WDGRs. Five groups of experiments were designed and conducted to probe the impacts of the distance between the fractures and the gas well, the drainage position, the drainage timing and the aquifer size on the water invasion and production performance of a gas reservoir. The gas and water production and the internal pressure drop were monitored in real time during the experiments. Based on the above experimental works, a theoretical analysis was conducted to quantitatively evaluate the performance of the gas reservoir recovery via the gas well production performance, water invasion, dynamic pressure drop and residual gas and water distribution analysis. The results show that when the fracture scale was appropriate, a gas well drilled close to a fracture (Experiment 1-3) or a high-permeability formation could also produce gas and achieve drainage efficiently. The recovery factor of Experiment 1-3 reached 62.5%, which was 24.6% and 21.1% higher than those of Experiments 1-1 and 1-2, respectively, which had wells drilled in low-permeability areas. Draining water near an aquifer can effectively inhibit water invasion during the early stage of gas recovery. The setup in Experiment 2-1 effectively inhibited water invasion and avoided the formation of water-sealed volumes of gas to recover 30% more gas than recovered with that of Experiment 1-1 without drainage wells. A shorter distance between the drainage well and the aquifer increased the drainage capacity and decreased the gas production capacity, respectively (Well 2 at Point A vs Point B). A larger aquifer had a lower gas recovery, which reduced the economic benefit. For example, due to an infinitely large aquifer, the reserves in Experiment 4-1 were developed by a single well, the gas recovery was only 33.4%. These research results are expected to be beneficial for the preparation of development plans and the optimization of water control measures for WDGRs.


2021 ◽  
Author(s):  
xuan xu ◽  
Xizhe li ◽  
yong hu ◽  
yu shi ◽  
qingyan mei ◽  
...  

Abstract The development of water drive gas reservoirs (WDGRs) with fractures or strong heterogeneity is severely influenced by water invasion. Accurately simulating the rules of water invasion and drainage gas recovery countermeasures in fractured WDGRs, thereby revealing the mechanism of water invasion and an appropriate development strategy, is important for formulating water management measures and enhancing the recovery of gas reservoirs. In this work, physical simulation methods were proposed to gain a better understanding of water invasion and to optimize the water control of fractured WDGRs. Five groups of experiments were designed and conducted to probe the impacts of the distance between the fractures and the gas well, the drainage position, the drainage timing and the aquifer size on the water invasion and production performance of a gas reservoir. The gas and water production and the internal pressure drop were monitored in real time during the experiments. Based on the above experimental works, a theoretical analysis was conducted to quantitatively evaluate the performance of the gas reservoir recovery via the gas well production performance, water invasion, dynamic pressure drop and residual gas and water distribution analysis. The results show that when the fracture scale was appropriate, a gas well drilled close to a fracture (Experiment 1–3) or a high-permeability formation could also produce gas and achieve drainage efficiently. The recovery factor of Experiment 1–3 reached 62.5%, which was 24.6% and 21.1% higher than those of Experiments 1–1 and 1–2, respectively, which had wells drilled in low-permeability areas. Draining water near an aquifer can effectively inhibit water invasion during the early stage of gas recovery. The setup in Experiment 2 − 1 effectively inhibited water invasion and avoided the formation of water-sealed volumes of gas to recover 30% more gas than recovered with that of Experiment 1–1 without drainage wells. A shorter distance between the drainage well and the aquifer increased the drainage capacity and decreased the gas production capacity, respectively (Well 2 at Point A vs Point B). A larger aquifer had a lower gas recovery, which reduced the economic benefit. For example, due to an infinitely large aquifer, the reserves in Experiment 4 − 1 were developed by a single well, the gas recovery was only 33.4%. These research results are expected to be beneficial for the preparation of development plans and the optimization of water control measures for WDGRs.


2011 ◽  
Vol 121-126 ◽  
pp. 1249-1253
Author(s):  
Guo Yun Wu ◽  
Jiao Li

Multi-layered unconsolidated sandstone gas reservoir is featured by unconsolidated lithology, interbeded gas-water zones and active edge water. Irrational production proration will lead to water breakthrough and sand inflow(AOF) is already incompetent in solving problems nowadays. Based on multipoint well test deliverability analysis, production data dynamic analysis, single well controlled reserves and critical situation of inflow calculation, and combining the calculation of minimum liquid hold-up gas rate an maximum erosion gas rate, meanwhile considering balanced gas recovery factor, balanced pressure drop, safe sand inflow and safe liquid hold-up, the multi-factor production plan has been set up, which is improved and adjusted by integrating water influx performance and years of stable production, through gas reservoir numerical simulation. A scientific and rational production proration pattern particularly for this type of gas reservoir has been determined. The reservoir simulation results of case study show that the water production in gas well can be controlled and the gas reservoir sustained stable production can last more than 1.3 year.


2011 ◽  
Vol 51 (1) ◽  
pp. 577
Author(s):  
Fadi Ali ◽  
Hassan Bahrami ◽  
Po Chu Byfield ◽  
Jijin Mathew

Water breakthrough and the flow of water towards the perforations of a producing well increase production operation costs and influence overall recovery efficiency. To control water production, a downhole water sink can be used in which a well is completed in both oil and water zones. Water is produced from an interval in water zone, which can result in the same pressure drop below water oil contact (WOC) as the pressure drop created by oil or gas production. This system can reduce water production through oil zone perforations. Water produced from water zone perforations can then be injected in deeper aquifers intervals. This technology can also be implemented in horizontal and multi-lateral wells to further increase hydrocarbon recovery with fewer water problems. This study examines the use of horizontal downhole water sink technology to increase oil recovery. Numerical simulation is performed to optimise oil production and water control in a multi-layered oil reservoir, by optimising the direction of drilling and the downhole water sink method. Different scenarios of drilling direction and horizontal down-hole water sink method are examined to identify the option that provides maximum oil recovery. The simulation results showed that drilling horizontal wells in a north–south direction resulted in higher well productivity, and that wells with significantly more water production problems can be controlled using a horizontal downhole water sink.


1995 ◽  
Vol 32 (1) ◽  
pp. 25-32 ◽  
Author(s):  
Satoshi Watanabe

Since 1982, the City of Yokohama has been studying the effects of storm water runoff control measures by setting up a model area in a residential area and installing two types of runoff control facilities – permeable pavement and infiltration pipes. The model area was subdivided into three areas according to the combination of the runoff control facilities. The study results revealed that 15 to 20 percent of the peak runoff control effect was achieved by the use of the installed runoff control facilities. Throughout the study period, no deterioration of the strength and features of the permeable pavement in comparison with ordinary pavement was observed.


1991 ◽  
Vol 23 (1-3) ◽  
pp. 85-91 ◽  
Author(s):  
Ho Kin-chung

The water quality in the 12 priority watercourses of Hong Kong was appraised in respect of the various environmental control measures being undertaken. It was noted that water quality in Lam Tsuen River had been significantly improved since 1983. This is attributed to recent resumption of unsewered lands for town development, training of river basin to increase flow, and declaration of the catchment as a “Water Control Zone” under the Water Pollution Control Ordinance. In contrast with the other heavily polluted watercourses to which little abatement measures were implemented, the water qualities of Shing Mun River and Tuen Mun River were slightly upgraded because of the efforts to rectify unauthorized industrial discharges back to foul sewer and provision of interceptors and sewers to villages. The 10 year Livestock Waste Control Scheme enforced on 24 June 1989 was found in parallel with BOD and suspended solids decrease in watercourses. To assess its effectiveness, however, a longer term monitoring is required to get a conclusive result.


2020 ◽  
pp. 014459872096415
Author(s):  
Jianlin Guo ◽  
Fankun Meng ◽  
Ailin Jia ◽  
Shuo Dong ◽  
Haijun Yan ◽  
...  

Influenced by the complex sedimentary environment, a well always penetrates multiple layers with different properties, which leads to the difficulty of analyzing the production behavior for each layer. Therefore, in this paper, a semi-analytical model to evaluate the production performance of each layer in a stress-sensitive multilayer carbonated gas reservoir is proposed. The flow of fluids in layers composed of matrix, fractures, and vugs can be described by triple-porosity/single permeability model, and the other layers could be characterized by single porosity media. The stress-sensitive exponents for different layers are determined by laboratory experiments and curve fitting, which are considered in pseudo-pressure and pseudo-time factor. Laplace transformation, Duhamel convolution, Stehfest inversion algorithm are used to solve the proposed model. Through the comparison with the classical solution, and the matching with real bottom-hole pressure data, the accuracy of the presented model is verified. A synthetic case which has two layers, where the first one is tight and the second one is full of fractures and vugs, is utilized to study the effects of stress-sensitive exponents, skin factors, formation radius and permeability for these two layers on production performance. The results demonstrate that the initial well production is mainly derived from high permeable layer, which causes that with the rise of formation permeability and radius, and the decrease of stress-sensitive exponents and skin factors, in the early stage, the bottom-hole pressure and the second layer production rate will increase. While the first layer contributes a lot to the total production in the later period, the well bottom-hole pressure is more influenced by the variation of formation and well condition parameters at the later stage. Compared with the second layer, the scales of formation permeability and skin factor for first layer have significant impacts on production behaviors.


2012 ◽  
Vol 17 (5) ◽  
pp. 604-614 ◽  
Author(s):  
Allen P. Davis ◽  
Robert G. Traver ◽  
William F. Hunt ◽  
Ryan Lee ◽  
Robert A. Brown ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document