scholarly journals Barite–Micromax mixture, an enhanced weighting agent for the elimination of barite sag in invert emulsion drilling fluids

2020 ◽  
Vol 10 (6) ◽  
pp. 2427-2435 ◽  
Author(s):  
Salem Basfar ◽  
Abdelmjeed Mohamed ◽  
Salaheldin Elkatatny
2021 ◽  
Author(s):  
Vikrant Wagle ◽  
Abdullah Yami ◽  
Michael Onoriode ◽  
Jacques Butcher ◽  
Nivika Gupta

Abstract The present paper describes the results of the formulation of an acid-soluble low ECD organoclay-free invert emulsion drilling fluid formulated with acid soluble manganese tetroxide and a specially designed bridging package. The paper also presents a short summary of field applications to date. The novel, non-damaging fluid has superior rheology resulting in lower ECD, excellent suspension properties for effective hole cleaning and barite-sag resistance while also reducing the risk of stuck pipe in high over balance applications. 95pcf high performance invert emulsion fluid (HPIEF) was formulated using an engineered bridging package comprising of acid-soluble bridging agents and an acid-soluble weighting agent viz. manganese tetroxide. The paper describes the filtration and rheological properties of the HPIEF after hot rolling at 300oF. Different tests such as contamination testing, sag-factor analysis, high temperature-high pressure rheology measurements and filter-cake breaking studies at 300oF were performed on the HPIEF. The 95pcf fluid was also subjected to particle plugging experiments to determine the invasion characteristics and the non-damaging nature of the fluids. The 95pcf HPIEF exhibited optimal filtration properties at high overbalance conditions. The low PV values and rheological profile support low ECDs while drilling. The static aging tests performed on the 95pcf HPIEF resulted in a sag factor of less than 0.53, qualifying the inherent stability for expected downhole conditions. The HPIEF demonstrated resilience to contamination testing with negligible change in properties. Filter-cake breaking experiments performed using a specially designed breaker fluid system gave high filter-cake breaking efficiency. Return permeability studies were performed with the HPIEF against synthetic core material, results of which confirmed the non-damaging design of the fluid. The paper thus demonstrates the superior performance of the HPIEF in achieving the desired lab and field performance.


2021 ◽  
pp. 1-19
Author(s):  
Ashraf Ahmed ◽  
Salem Basfer ◽  
Salaheldin Elkatatny

Abstract The solids sagging in high-pressure high-temperature (HP/HT) reservoirs is a common challenge associated with hematite drilling fluids. This study provides a solution to hematite sagging in invert emulsion mud for HP/HT wells which involves the combination of Micromax (Mn3O4) with hematite. The particles of both weighting agents were characterized to address their mineralogical features. A Field formulation of the mud was used over a range of Micromax/hematite ratios (0/100, 20/80, and 30/70%) in laboratory experiments to address the sag performance and determine the optimal combination ratio. Then, density, emulsion stability, rheology, viscoelasticity, and filtration performance for the formulated mud were addressed. The tests were conditioned to 500 psi and 350 °F. The acquired results of sag tests indicated that incorporation of 30% Micromax solved the hematite sagging issue and brought the sag tendency within the recommended safe range. An insignificant reduction in mud density was observed upon the inclusion of Micromax, while the emulsion stability was obviously improved from 551 to 614 volts with the 30% Micromax mixture. The recommended 30/70% combination had almost no effect on plastic viscosity and yield point since they were increased by one unit, but the gel strength was improved resulting in flat rheology and better solids suspension capacity. The filtration behavior of the formulation with 30% Micromax was enhanced compared to pure hematite as it resulted in 10 and 14% reduction of the filtrate volume and filter-cake thickness, respectively. This study contributes to improve and economize the drilling cost and time by formulating a stabilized and distinguished-performance drilling mud using combined weighting agents at HP/HT.


2015 ◽  
Author(s):  
Dhanashree Kulkarni ◽  
Shadaab Maghrabi ◽  
Vikrant Wagle

2015 ◽  
Author(s):  
Vikrant Wagle ◽  
Abdullah S. Al-Yami ◽  
Ziad AlAbdullatif

2021 ◽  
Author(s):  
Arvindbhai Patel ◽  
Anil Kumar Singh ◽  
Nikhil Bidwai ◽  
Sakshi Indulkar ◽  
Vivek Gupta

Abstract Stable invert emulsion with oil wet solids is achieved using invert emulsifiers and wetting agents. This paper reviews the chemistry and performance criteria of traditional invert emulsifiers and wetting agents utilized in formulating stable invert emulsion drilling fluids. However, occasionally such stable invert emulsion drilling fluids can be destabilized due to various hostile conditions encountered during drilling operation, and can adversely impact the drilling cost. Extreme preventive measures cannot avoid such hostile conditions such as sudden water influx, excessive solids and salt contaminations during drilling. Upon solids becoming extremely water wet with "flipped emulsion", it becomes impossible to fix the drilling fluid, resulting in expensive maneuver. Often situation cannot be corrected with traditional wetting agents and emulsifiers even at high level of treatments. New innovative chemistry addresses the severe water-wetting and emulsion instability of invert emulsion under extreme challenging and hostile situations. The unique water soluble oil mud conditioner (OMC) synergistically enhances the performances of traditional oil-wetting agents and emulsifiers at very low, as little as 0.5 ppb levels of treatment. This OMC improves and extends the efficacy of the traditional invert emulsifiers and oil wetting agents resulting in reduced usage of these additives with excellent economic advantages. The 15.0 ppg, invert emulsion drilling fluids were prepared using 2-3 ppb of primary and secondary emulsifiers, and these fluids were destabilized using high shear mixer for 7-8 hours. The destabilized fluids had severe water wet solids and ES value of less than 5. These destabilized fluids, upon treating with 0.5 ppb of newly developed OMC instantly became oil-wet and shiny and ES was increased to greater than 500. To demonstrate the effectiveness of OMC in pre-treatment situation, the base fluids treated with 0.5 −1.0 ppb of OMC showed superior mud stability compared to base fluid when contaminated with sea water, fine solids, barite and high salt contaminations. The OMC is flexible in its application and can be used as pre-treatment to improve the overall performance of drilling fluids and can also be used for post-treatment to recover the drilling fluids, which have been rendered unusable.


Sign in / Sign up

Export Citation Format

Share Document